def run(self, data, verbose=False):
        '''
        Override function from superclass.

        :param data: Pandas dataframe on which to test model.
        :return: void
        '''

        r = self.player_rankings
        p = self.params
        glicko = rs.Glicko2(p["mu"], p["phi"], p["sigma"], p["tau"], p["eps"])
        probabilities = []
        bet_amount = []
        P = []
        Q = []

        for i, row in data.iterrows():
            name1 = row["Winner"]
            name2 = row["Loser"]
            wsp1 = row["WSP1"]
            wsp2 = row["WSP2"]

            # If there is no data on serve win percentage, skip.
            if math.isnan(wsp1) or math.isnan(wsp2):
                probabilities.append(0.5)
                bet_amount.append(0)
                continue

            if not r.get(name1, False):
                r[name1] = [glicko.create_rating(), glicko.create_rating()]
            if not r.get(name2, False):
                r[name2] = [glicko.create_rating(), glicko.create_rating()]

            p = glicko.expect(r[name1][0], r[name2][1])
            q = glicko.expect(r[name2][0], r[name1][1])
            P.append(p)
            Q.append(q)
            win_prob = calc.prob_win_match(p, q, row["Best_of"])
            probabilities.append(win_prob)
            bet_amount.append(1)

            r[name1][0], r[name2][1] = glicko.rate_1vs1(r[name1][0], r[name2][1], wsp1 )
            r[name2][0], r[name1][1] = glicko.rate_1vs1(r[name2][0], r[name1][1], wsp2)

        self.player_rankings = r

        if verbose:
            sez = sorted([[rt[0].mu, rt[1].mu, key] for key, rt in r.iteritems()], key=lambda x: x[0]+x[1], reverse=True)
            print '\n'.join(['{:>22s} {:8.1f} {:8.1f}'.format(p[2], p[0], p[1]) for p in sez[:20]]) + "\n\n"


        df = data.copy()
        df["win_prob"] = probabilities
        df["bet_amount"] = bet_amount

        return df
Example #2
0
    def run(self, data, verbose=False):
        '''
        Override function from superclass.

        :param data: Pandas dataframe on which to test model.
        :return: void
        '''

        r = self.player_rankings
        probabilities = []
        bet_amount = []

        for i, row in data.iterrows():
            name1 = row["Winner"]
            name2 = row["Loser"]
            wsp1 = row["WSP1"]
            wsp2 = row["WSP2"]

            # If there is no data on serve win percentage, skip.
            if math.isnan(wsp1) or math.isnan(wsp2):
                probabilities.append(0.5)
                bet_amount.append(0)
                continue

            if not r.get(name1, False):
                r[name1] = Player()
            if not r.get(name2, False):
                r[name2] = Player()

            s1, r1 = r[name1].get()
            s2, r2 = r[name2].get()

            p = s1 + r2 - 0.4
            q = s2 + r1 - 0.4

            win_prob = calc.prob_win_match(p, q, row["Best_of"])
            probabilities.append(win_prob)
            bet_amount.append(1)

            r[name1].add(wsp1, 1.0 - wsp2)
            r[name2].add(wsp2, 1.0 - wsp1)

        self.player_rankings = r

        if verbose:
            sez = sorted([[rt.get()[0], rt.get()[1], key] for key, rt in r.iteritems()], key=lambda x: x[0]+x[1], reverse=True)
            print '\n'.join(['{:>22s} {:8.5f} {:8.5f}'.format(p[2], p[0], p[1]) for p in sez[:20]]) + "\n\n"

        df = data.copy()
        df["win_prob"] = probabilities
        df["bet_amount"] = bet_amount

        return df
    def win_probabilities(self, player1, player2, best_of=3):
        '''
        Calculates fair betting odds according to our model and returns them
        as tuple.

        :param player1: Class player for player1
        :param player2: Class player for player2
        :param best_of: How many sets we are playing
        :return: Tuple (odds1, odds2), representing fair odds for player
                    one or two winning
        '''

        p, q = self.expect(player1, player2)

        win_prob = calc.prob_win_match(p, q, best_of)

        return (win_prob, 1 - win_prob, p, q)
Example #4
0
    def run(self, data, verbose=False):
        '''
        Override function from superclass.

        :param data: Pandas dataframe on which to test model.
        :return: void
        '''

        r = self.player_rankings
        p = self.params
        glicko = rs.Glicko2(p["mu"], p["phi"], p["sigma"], p["tau"], p["eps"])
        probabilities = []
        bet_amount = []
        P = []
        Q = []

        for i, row in data.iterrows():
            name1 = row["Winner"]
            name2 = row["Loser"]
            wsp1 = row["WSP1"]
            wsp2 = row["WSP2"]

            # If there is no data on serve win percentage, skip.
            if math.isnan(wsp1) or math.isnan(wsp2):
                probabilities.append(0.5)
                bet_amount.append(0)
                continue

            if not r.get(name1, False):
                r[name1] = [glicko.create_rating(), glicko.create_rating()]
            if not r.get(name2, False):
                r[name2] = [glicko.create_rating(), glicko.create_rating()]

            p = glicko.expect(r[name1][0], r[name2][1])
            q = glicko.expect(r[name2][0], r[name1][1])
            P.append(p)
            Q.append(q)
            win_prob = calc.prob_win_match(p, q, row["Best_of"])
            probabilities.append(win_prob)
            bet_amount.append(1)

            r[name1][0], r[name2][1] = glicko.rate_1vs1(
                r[name1][0], r[name2][1], wsp1)
            r[name2][0], r[name1][1] = glicko.rate_1vs1(
                r[name2][0], r[name1][1], wsp2)

        self.player_rankings = r

        if verbose:
            sez = sorted([[rt[0].mu, rt[1].mu, key]
                          for key, rt in r.iteritems()],
                         key=lambda x: x[0] + x[1],
                         reverse=True)
            print '\n'.join([
                '{:>22s} {:8.1f} {:8.1f}'.format(p[2], p[0], p[1])
                for p in sez[:20]
            ]) + "\n\n"

        df = data.copy()
        df["win_prob"] = probabilities
        df["bet_amount"] = bet_amount

        return df
qg = game()
p = p_t
confirm = calculations._prob_win_game(p)
print "p:", p
print_table(memo1)
print "Confirming with calculations: ", confirm
print

# Tiebreaker.
pt = tiebreaker()
confirm = calculations._prob_win_tiebreaker(p, q)
print "pt:", pt
print_table(memo2)
print "Confirming with calculations: ", confirm
print

# Set.
ps = set()
confirm = calculations._prob_win_set(p, q)
print "pg, qg:", pg, qg
print_table(memo3)
print "Confirming with calculations: ", confirm
print

# Match.
pm = match(best_of=5)
confirm = calculations.prob_win_match(p, q, 5)
print "pm, ", pm
print_table(memo4)
print "Confirming with calculations: ", confirm
print
    def run(self, data, verbose=False):
        '''
        Override function from superclass.

        :param data: Pandas dataframe on which to test model.
        :return: void
        '''

        r = self.player_rankings
        g = self.player_games
        elo = rs.Elo(self.params["mu"], self.params["K"])
        edge = self.params["edge"]
        probabilities = []
        bet_amount = []

        for i, row in data.iterrows():
            name1 = row["Winner"]
            name2 = row["Loser"]
            wsp1 = row["WSP1"]
            wsp2 = row["WSP2"]

            # If there is no data on serve win percentage, skip.
            if math.isnan(wsp1) or math.isnan(wsp2):
                probabilities.append(0.5)
                bet_amount.append(0)
                continue

            if not r.get(name1, False):
                r[name1] = [elo.create_rating(), elo.create_rating()]
            if not r.get(name2, False):
                r[name2] = [elo.create_rating(), elo.create_rating()]

            p = elo.expect(r[name1][0], r[name2][1]) + edge
            q = elo.expect(r[name2][0], r[name1][1]) + edge

            win_prob = calc.prob_win_match(p, q, row["Best_of"])
            probabilities.append(win_prob)
            # probabilities.append(random.random())
            # bet_amount.append(1)

            g[name1] = g.get(name1, 0.0) + 1
            g[name2] = g.get(name2, 0.0) + 1

            if g[name1] > 50 and g[name2] > 50:
                bet_amount.append(1)
            else:
                bet_amount.append(0)

            r[name1][0], r[name2][1] = elo.match(r[name1][0], r[name2][1],
                                                 wsp1 - edge)
            r[name2][0], r[name1][1] = elo.match(r[name2][0], r[name1][1],
                                                 wsp2 - edge)

        self.player_rankings = r
        self.player_games = g

        if verbose:
            sez = sorted([[rt[0].rating, rt[1].rating, key]
                          for key, rt in r.iteritems()],
                         key=lambda x: x[0] + x[1],
                         reverse=True)
            print '\n'.join([
                '{:>22s} {:8.1f} {:8.1f}'.format(str(p[2]), p[0], p[1])
                for p in sez[:20]
            ]) + "\n\n"

        df = data.copy()
        df["win_prob"] = probabilities
        df["bet_amount"] = bet_amount

        return df
Example #7
0
    def run(self, data, verbose=False):
        '''
        Override function from superclass.

        :param data: Pandas dataframe on which to test model.
        :return: void
        '''

        r = self.player_rankings
        s = self.surface_advantage
        g = self.player_games

        elo = rs.Elo(self.params["mu"], self.params["K"])
        edge = self.params["edge"]
        probabilities = []
        bet_amount = []

        for i, row in data.iterrows():
            name1 = row["Winner"]
            name2 = row["Loser"]
            wsp1 = row["WSP1"]
            wsp2 = row["WSP2"]

            # If there is no data on serve win percentage, skip.
            if math.isnan(wsp1) or math.isnan(wsp2):
                probabilities.append(0.5)
                bet_amount.append(0)
                continue

            if not r.get(name1, False):
                r[name1] = [elo.create_rating(), elo.create_rating()]
                s[name1] = Player()
            if not r.get(name2, False):
                r[name2] = [elo.create_rating(), elo.create_rating()]
                s[name2] = Player()

            s1, r1, h11, h12 = s[name1].get_advantage(row["Surface"])
            s2, r2, h21, h22 = s[name2].get_advantage(row["Surface"])
            h1 = h11 + h22
            h2 = h12 + h21

            a1 = s1 - r2
            if a1 + h1 < 0.0: a1 += h1
            elif a1 - h1 > 0.0: a1 -= h1
            else: a1 = 0

            a2 = s2 - r1
            if a2 + h2 < 0.0: a2 += h2
            elif a2 - h2 > 0.0: a2 -= h2
            else: a2 = 0

            p = elo.expect(r[name1][0], r[name2][1]) + edge + a1
            q = elo.expect(r[name2][0], r[name1][1]) + edge + a2

            s[name1].update(wsp1, 1.0 - wsp2, row["Surface"])
            s[name2].update(wsp2, 1.0 - wsp1, row["Surface"])

            win_prob = calc.prob_win_match(p, q, row["Best_of"])

            g[name1] = g.get(name1, 0.0) + 1
            g[name2] = g.get(name2, 0.0) + 1

            """
            if g[name1]>5 and g[name2]>5:
                bet_amount.append(1)
            else:
                bet_amount.append(0)
            """

            bet_amount.append(1)
            probabilities.append(win_prob)

            r[name1][0], r[name2][1] = elo.match(r[name1][0], r[name2][1], wsp1 - edge)
            r[name2][0], r[name1][1] = elo.match(r[name2][0], r[name1][1], wsp2 - edge)

        self.surface_advantage = s
        self.player_rankings = r
        self.player_games = g

        if verbose:
            sez = sorted([[rt[0].rating, rt[1].rating, str(key)] for key, rt in r.iteritems()], key=lambda x: x[0]+x[1], reverse=True)
            print '\n'.join(['{:>22s} {:8.1f} {:8.1f}'.format(p[2], p[0], p[1]) for p in sez[:20]]) + "\n\n"

        df = data.copy()
        df["win_prob"] = probabilities
        df["bet_amount"] = bet_amount

        return df
pg = game()
p_t = p; p = q; qg = game(); p = p_t
confirm = calculations._prob_win_game(p)
print "p:", p
print_table(memo1)
print "Confirming with calculations: ", confirm
print

# Tiebreaker.
pt = tiebreaker()
confirm = calculations._prob_win_tiebreaker(p, q)
print "pt:", pt
print_table(memo2)
print "Confirming with calculations: ", confirm
print

# Set.
ps = set()
confirm = calculations._prob_win_set(p, q)
print "pg, qg:", pg, qg
print_table(memo3)
print "Confirming with calculations: ", confirm
print

# Match.
pm = match(best_of=5)
confirm = calculations.prob_win_match(p, q, 5)
print "pm, ", pm
print_table(memo4)
print "Confirming with calculations: ", confirm
print
    def run(self, data, verbose=False):
        """
        Override function from superclass.

        :param data: Pandas dataframe on which to test model.
        :return: void
        """

        r = self.player_rankings
        g = self.player_games
        elo = rs.Elo(self.params["mu"], self.params["K"])
        edge = self.params["edge"]
        probabilities = []
        bet_amount = []

        for i, row in data.iterrows():
            name1 = row["Winner"]
            name2 = row["Loser"]
            wsp1 = row["WSP1"]
            wsp2 = row["WSP2"]

            # If there is no data on serve win percentage, skip.
            if math.isnan(wsp1) or math.isnan(wsp2):
                probabilities.append(0.5)
                bet_amount.append(0)
                continue

            if not r.get(name1, False):
                r[name1] = [elo.create_rating(), elo.create_rating()]
            if not r.get(name2, False):
                r[name2] = [elo.create_rating(), elo.create_rating()]

            p = elo.expect(r[name1][0], r[name2][1]) + edge
            q = elo.expect(r[name2][0], r[name1][1]) + edge

            win_prob = calc.prob_win_match(p, q, row["Best_of"])
            probabilities.append(win_prob)
            # probabilities.append(random.random())
            # bet_amount.append(1)

            g[name1] = g.get(name1, 0.0) + 1
            g[name2] = g.get(name2, 0.0) + 1

            if g[name1] > 50 and g[name2] > 50:
                bet_amount.append(1)
            else:
                bet_amount.append(0)

            r[name1][0], r[name2][1] = elo.match(r[name1][0], r[name2][1], wsp1 - edge)
            r[name2][0], r[name1][1] = elo.match(r[name2][0], r[name1][1], wsp2 - edge)

        self.player_rankings = r
        self.player_games = g

        if verbose:
            sez = sorted(
                [[rt[0].rating, rt[1].rating, key] for key, rt in r.iteritems()],
                key=lambda x: x[0] + x[1],
                reverse=True,
            )
            print "\n".join(["{:>22s} {:8.1f} {:8.1f}".format(str(p[2]), p[0], p[1]) for p in sez[:20]]) + "\n\n"

        df = data.copy()
        df["win_prob"] = probabilities
        df["bet_amount"] = bet_amount

        return df
Example #10
0
__author__ = 'riko'

import time
import calculations as calc

p = 0.70
q = 0.70

start = time.clock()
m1 = calc.prob_win_match(p, q)
m2 = calc.monte_carlo_match(p, q)
end = time.clock()

print m1
print m2
print "Time: ", end - start