Example #1
0
def _cluster_create(args: dict, project_id: str, creds: Credentials) -> None:
    """creates a gke cluster

  Args:
  args: commandline args
  project_id: project in which to create cluster
  creds: credentials to use
  """
    dry_run = args['dry_run']
    cluster_name = args['cluster_name'] or k.DEFAULT_CLUSTER_NAME
    zone = args['zone']
    dashboard_url = utils.dashboard_cluster_url(cluster_name, zone, project_id)
    release_channel = args['release_channel']
    single_zone = args['single_zone']

    # --------------------------------------------------------------------------
    cluster_client = googleapiclient.discovery.build('container',
                                                     k.CLUSTER_API_VERSION,
                                                     credentials=creds,
                                                     cache_discovery=False)

    if cluster_client is None:
        logging.error('error building cluster client')
        return

    request = Cluster.create_request(cluster_client, creds, cluster_name,
                                     project_id, zone, release_channel,
                                     single_zone)

    if request is None:
        logging.error('error creating cluster creation request')
        return

    if dry_run:
        logging.info('request:\n{}'.format(pp.pformat(json.loads(
            request.body))))
        return

    # --------------------------------------------------------------------------
    # see if cluster(s) already exist, and if so, check with the user before
    # creating another
    if not _check_for_existing_cluster(cluster_name, project_id, creds):
        return

    logging.info('creating cluster {} in project {} in {}...'.format(
        cluster_name, project_id, zone))
    logging.info('please be patient, this may take several minutes')
    logging.info(
        'visit {} to monitor cluster creation progress'.format(dashboard_url))

    # --------------------------------------------------------------------------
    # create the cluster
    cluster = Cluster.create(cluster_client, creds, request, project_id)

    return
Example #2
0
def submit_job_specs(
    args: Dict[str, Any],
    cluster: Cluster,
) -> None:
    """submits jobs to cluster

  Args:
  args: dictionary of args
  cluster: cluster instance
  """
    job_specs = args.get('specs')

    for s in job_specs:
        name = s.spec['template']['spec']['containers'][0]['name']
        cluster.submit_job(job_spec=s, name=name)
Example #3
0
def _check_for_existing_cluster(cluster_name: str, project_id: str,
                                creds: Credentials):
    '''checks for an existing cluster and confirms new cluster creation with user

  Args:
  cluster_name: name of cluster to create
  project_id: project id
  creds: credentials

  Returns:
  True if cluster creation should proceed, False otherwise
  '''

    clusters = Cluster.list(project_id=project_id, creds=creds)

    if len(clusters) == 0:
        return True

    if cluster_name in clusters:
        logging.error('cluster {} already exists'.format(cluster_name))
        return False

    logging.info('{} clusters already exist for this project:'.format(
        len(clusters)))
    for c in clusters:
        logging.info(c)

    return utils.user_verify('Do you really want to create a new cluster?',
                             default=False)
Example #4
0
def _node_pool_ls(args: dict, cluster: Cluster) -> None:
    """lists cluster node pools

  Args:
  args: commandline args
  cluster: lists node pools in this cluster instance
  """

    np = cluster.node_pools()

    if np is None:
        return

    if len(np) == 0:
        logging.info('no node pools found')
        return

    FMT = '%-20s%-20s%-40s%-20s'
    logging.info(FMT, 'NAME', 'MACHINE TYPE', 'ACCELERATORS', 'MAX NODES')
    for p in np:
        accel = ','.join([
            '%s(%d)' % (a.accelerator_type, a.accelerator_count)
            for a in p.config.accelerators
        ])
        logging.info(FMT % (p.name, p.config.machine_type, accel,
                            p.autoscaling.max_node_count))

    return
Example #5
0
def _cluster_ls(args: dict, project_id: str, creds: Credentials) -> None:
    """lists clusters

  Args:
  args: commandline args
  project_id: list clusters in the project
  creds: credentials to use
  """
    clusters = Cluster.list(project_id=project_id, creds=creds)

    if clusters is None:
        return

    cluster_name = args.get('cluster_name', None)

    if cluster_name is not None:
        if cluster_name not in clusters:
            logging.error('cluster {} not found'.format(cluster_name))
            return
        logging.error(cluster_name)
        return

    logging.info('{} clusters found'.format(len(clusters)))
    for c in clusters:
        logging.info(c)

    return
Example #6
0
def _cluster_delete(args: dict, cluster: Cluster) -> None:
    """deletes given cluster

  Args:
  args: commandline args
  cluster: cluster to delete

  Returns:
  None
  """

    if utils.user_verify('Are you sure you want to delete {}?'.format(
            cluster.name),
                         default=False):
        cluster.delete()

    return
Example #7
0
def get_job_cluster(j: Job) -> Optional[Cluster]:
  '''gets the cluster name from a Job object'''
  if j.spec.platform != Platform.GKE:
    return None

  return Cluster.get(name=j.details['cluster_name'],
                     project_id=j.details['project_id'],
                     zone=j.details['cluster_zone'],
                     creds=default_credentials().credentials)
Example #8
0
    def wrapper(args: dict,
                project_id: str,
                creds: Credentials,
                zone: str = k.ZONE_DEFAULT):
        cluster_name = args.get('cluster_name')

        cluster = Cluster.get(name=cluster_name,
                              project_id=project_id,
                              zone=zone,
                              creds=creds)

        return fn(args, cluster=cluster) if cluster else None
Example #9
0
def _job_submit_file(args: dict, cluster: Cluster) -> None:
    """submit gke job from k8s yaml/json file"""

    job_file = args['job_file']

    job_spec = utils.parse_job_file(job_file)
    if job_spec is None:
        logging.error('error parsing job file {}'.format(job_file))
        return

    if args['dry_run']:
        logging.info('job to submit:\n{}'.format(pp.pformat(job_spec)))
        return

    job = cluster.submit_v1job(job=job_spec)
    if job is None:
        logging.error('error submitting job:\n{}'.format(pp.pformat(job_spec)))
        return

    logging.info('submitted job: {}'.format(cluster.job_dashboard_url(job)))

    return
Example #10
0
def _pod_ls(args: dict, cluster: Cluster):
    """lists pods for given cluster

  Args:
  args: commandline args
  cluster: list pods in this cluster
  """
    pods = cluster.pods()
    if pods is None:
        return

    logging.info('{} pods found'.format(len(pods)))
    for p in pods:
        logging.info(p.metadata.name)

    return
Example #11
0
def _job_ls(args: dict, cluster: Cluster):
    """lists jobs in given cluster

  Args:
  args: commandline args
  cluster: lists jobs from this cluster
  """
    jobs = cluster.jobs()

    if jobs is None:
        return

    logging.info('{} jobs found'.format(len(jobs)))
    for j in jobs:
        logging.info(j.metadata.name)

    return
Example #12
0
def _job_submit(args: dict, cluster: Cluster) -> None:
    """submits job(s) to cluster

  Args:
  args: argument dictionary
  cluster: cluster instance
  """

    script_args = conf.extract_script_args(args)
    job_mode = cli.resolve_job_mode(args)
    docker_args = cli.generate_docker_args(job_mode, args)
    docker_run_args = args.get('docker_run_args', []) or []
    dry_run = args['dry_run']
    package = args['module']
    job_name = _generate_job_name(args.get('name'))
    gpu_spec = args.get('gpu_spec')
    preemptible = not args['nonpreemptible']
    min_cpu = args.get('min_cpu')
    min_mem = args.get('min_mem')
    experiment_config = args.get('experiment_config') or [{}]
    xgroup = args.get('xgroup')
    image_tag = args.get('image_tag')
    export = args.get('export', None)

    labels = args.get('label')
    if labels is not None:
        labels = dict(u.sanitize_labels(args.get('label')))

    # Arguments to internally build the image required to submit to Cloud.
    docker_m = {'job_mode': job_mode, 'package': package, **docker_args}

    # --------------------------------------------------------------------------
    # validatate gpu spec
    if job_mode == conf.JobMode.GPU and gpu_spec is None:
        gpu_spec = k.DEFAULT_GPU_SPEC

    if not cluster.validate_gpu_spec(gpu_spec):
        return

    # --------------------------------------------------------------------------
    # validate tpu spec and driver
    tpu_spec = args.get('tpu_spec')
    preemptible_tpu = not args.get('nonpreemptible_tpu')
    tpu_driver = args.get('tpu_driver')

    if tpu_spec is not None:
        available_tpu = cluster.get_tpu_types()
        if available_tpu is None:
            logging.error('error getting valid tpu types for cluster')
            return

        if tpu_spec not in available_tpu:
            logging.error('invalid tpu spec, cluster supports:')
            for t in available_tpu:
                logging.info('{}x{}'.format(t.count, t.tpu.name))
            return

        if not cluster.validate_tpu_driver(tpu_driver):
            logging.error(
                'error: unsupported tpu driver {}'.format(tpu_driver))
            logging.info('supported tpu drivers for this cluster:')
            for d in cluster.get_tpu_drivers():
                logging.info('  {}'.format(d))
            return

    if tpu_spec is None and gpu_spec is None:  # cpu-only job
        min_cpu = min_cpu or k.DEFAULT_MIN_CPU_CPU
        min_mem = min_mem or k.DEFAULT_MIN_MEM_CPU
    else:  # gpu/tpu-accelerated job
        min_cpu = min_cpu or k.DEFAULT_MIN_CPU_ACCEL
        min_mem = min_mem or k.DEFAULT_MIN_MEM_ACCEL

    # convert accelerator spec
    accel_spec = Cluster.convert_accel_spec(gpu_spec, tpu_spec)
    if accel_spec is None:
        return

    accel, accel_count = accel_spec

    # --------------------------------------------------------------------------
    engine = get_mem_engine() if dry_run else get_sql_engine()

    with session_scope(engine) as session:
        container_spec = generate_container_spec(session, docker_m, image_tag)

        if image_tag is None:
            image_tag = generate_image_tag(cluster.project_id, docker_m,
                                           dry_run)

        experiments = create_experiments(
            session=session,
            container_spec=container_spec,
            script_args=script_args,
            experiment_config=experiment_config,
            xgroup=xgroup,
        )

        specs = list(
            cluster.create_simple_experiment_job_specs(
                name=utils.sanitize_job_name(job_name),
                image=image_tag,
                min_cpu=min_cpu,
                min_mem=min_mem,
                experiments=experiments,
                args=script_args,
                accelerator=accel,
                accelerator_count=accel_count,
                preemptible=preemptible,
                preemptible_tpu=preemptible_tpu,
                tpu_driver=tpu_driver))

        # just a dry run
        if dry_run:
            logging.info('jobs that would be submitted:')
            for s in specs:
                logging.info(f'\n{json.dumps(s.spec, indent=2)}')
            return

        # export jobs to file
        if export is not None:
            if not _export_jobs(
                    export,
                    cluster.create_v1jobs(specs, job_name, labels),
            ):
                print('error exporting jobs to {}'.format(export))
            return

        for s in specs:
            try:
                cluster.submit_job(job_spec=s, name=job_name, labels=labels)
            except Exception as e:
                logging.error(f'exception: {e}')
                session.commit()  # commit here, otherwise will be rolled back
                return

    # --------------------------------------------------------------------------
    logging.info(f'jobs submitted, visit {cluster.dashboard_url()} to monitor')

    return