def prepareDatasetAndLogging(args): # choose the dataset if args.dataset == 'mnist': DatasetClass = datasets.MNIST elif args.dataset == 'fashion_mnist': DatasetClass = datasets.FashionMNIST else: raise ValueError('unknown dataset: ' + args.dataset + ' try mnist or fashion_mnist') training_run_name = timeStamped(args.dataset + '_' + args.name) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} # Create the dataset, mnist or fasion_mnist dataset_dir = os.path.join(args.data_dir, args.dataset) training_run_dir = os.path.join(args.data_dir, training_run_name) train_dataset = DatasetClass( dataset_dir, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs) test_dataset = DatasetClass( dataset_dir, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs) # Set up visualization and progress status update code callback_params = {'epochs': args.epochs, 'samples': len(train_loader) * args.batch_size, 'steps': len(train_loader), 'metrics': {'acc': np.array([]), 'loss': np.array([]), 'val_acc': np.array([]), 'val_loss': np.array([])}} if args.print_log: output_on_train_end = os.sys.stdout else: output_on_train_end = None callbacklist = callbacks.CallbackList( [callbacks.BaseLogger(), callbacks.TQDMCallback(), callbacks.CSVLogger(filename=training_run_dir + training_run_name + '.csv', output_on_train_end=output_on_train_end)]) callbacklist.set_params(callback_params) tensorboard_writer = SummaryWriter(log_dir=training_run_dir, comment=args.dataset + '_embedding_training') # show some image examples in tensorboard projector with inverted color images = 255 - test_dataset.test_data[:100].float() label = test_dataset.test_labels[:100] features = images.view(100, 784) tensorboard_writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1)) return tensorboard_writer, callbacklist, train_loader, test_loader
def __init_callback(self): callback_params = {'epochs': self.args.epochs, 'samples': len(self.train_loader) * self.args.batch_size, 'steps': len(self.train_loader), 'metrics': {'acc': np.array([]), 'loss': np.array([]), 'val_acc': np.array([]), 'val_loss': np.array([])}} callback_list = callbacks.CallbackList( [callbacks.BaseLogger(), callbacks.TQDMCallback(), ]) callback_list.set_params(callback_params) callback_list.set_model(self.model) return callback_list
def prepareDatasetAndLogging(args): # choose the dataset if args.dataset == 'mnist': DatasetClass = datasets.MNIST elif args.dataset == 'fashion_mnist': DatasetClass = datasets.FashionMNIST else: raise ValueError('unknown dataset: ' + args.dataset + ' try mnist or fashion_mnist') training_run_name = timeStamped(args.dataset + '_' + args.name) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} # Create the dataset, mnist or fasion_mnist dataset_dir = os.path.join(args.data_dir, args.dataset) training_run_dir = os.path.join(args.data_dir, training_run_name) if args.transform: print('Using Data Augmentation!') train_dataset = DatasetClass( dataset_dir, train=True, download=True, transform=transforms.Compose([ transforms.RandomRotation(5), transforms.ColorJitter(), transforms.RandomResizedCrop(28, scale=(0.9, 1.0)), transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])) else: train_dataset = DatasetClass(dataset_dir, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs) test_dataset = DatasetClass(dataset_dir, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ])) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs) # Set up visualization and progress status update code callback_params = { 'epochs': args.epochs, 'samples': len(train_loader) * args.batch_size, 'steps': len(train_loader), 'metrics': { 'acc': np.array([]), 'loss': np.array([]), 'val_acc': np.array([]), 'val_loss': np.array([]) } } if args.print_log: output_on_train_end = os.sys.stdout else: output_on_train_end = None callbacklist = callbacks.CallbackList([ callbacks.BaseLogger(), callbacks.TQDMCallback(), callbacks.CSVLogger(filename=training_run_dir + training_run_name + '.csv', output_on_train_end=output_on_train_end) ]) callbacklist.set_params(callback_params) tensorboard_writer = SummaryWriter(log_dir=training_run_dir, comment=args.dataset + '_embedding_training') return tensorboard_writer, callbacklist, train_loader, test_loader
# Set up visualization and progress status update code callback_params = {'epochs': args.epochs, 'samples': len(train_loader) * args.batch_size, 'steps': len(train_loader), 'metrics': {'acc': np.array([]), 'loss': np.array([]), 'val_acc': np.array([]), 'val_loss': np.array([])}} if args.print_log: output_on_train_end = os.sys.stdout else: output_on_train_end = None callbacklist = callbacks.CallbackList( [callbacks.BaseLogger(), callbacks.TQDMCallback(), callbacks.CSVLogger(filename=training_run_dir + training_run_name + '.csv', output_on_train_end=output_on_train_end)]) callbacklist.set_params(callback_params) tensorboard_writer = SummaryWriter(log_dir=training_run_dir, comment=args.dataset + '_embedding_training') # show some image examples in tensorboard projector with inverted color images = 255 - test_dataset.test_data[:100].float() label = test_dataset.test_labels[:100] features = images.view(100, 784) tensorboard_writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1)) return tensorboard_writer, callbacklist, train_loader, test_loader # TODO Add classes for every option listed under the --model parser argument above.