def prepareDatasetAndLogging(args):
    # choose the dataset
    if args.dataset == 'mnist':
        DatasetClass = datasets.MNIST
    elif args.dataset == 'fashion_mnist':
        DatasetClass = datasets.FashionMNIST
    else:
        raise ValueError('unknown dataset: ' + args.dataset + ' try mnist or fashion_mnist')

    training_run_name = timeStamped(args.dataset + '_' + args.name)

    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}

    # Create the dataset, mnist or fasion_mnist
    dataset_dir = os.path.join(args.data_dir, args.dataset)
    training_run_dir = os.path.join(args.data_dir, training_run_name)
    train_dataset = DatasetClass(
        dataset_dir, train=True, download=True,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ]))
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
    test_dataset = DatasetClass(
        dataset_dir, train=False, transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.1307,), (0.3081,))
                    ]))
    test_loader = torch.utils.data.DataLoader(
        test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs)

    # Set up visualization and progress status update code
    callback_params = {'epochs': args.epochs,
                       'samples': len(train_loader) * args.batch_size,
                       'steps': len(train_loader),
                       'metrics': {'acc': np.array([]),
                                   'loss': np.array([]),
                                   'val_acc': np.array([]),
                                   'val_loss': np.array([])}}
    if args.print_log:
        output_on_train_end = os.sys.stdout
    else:
        output_on_train_end = None

    callbacklist = callbacks.CallbackList(
        [callbacks.BaseLogger(),
         callbacks.TQDMCallback(),
         callbacks.CSVLogger(filename=training_run_dir + training_run_name + '.csv',
                             output_on_train_end=output_on_train_end)])
    callbacklist.set_params(callback_params)

    tensorboard_writer = SummaryWriter(log_dir=training_run_dir, comment=args.dataset + '_embedding_training')

    # show some image examples in tensorboard projector with inverted color
    images = 255 - test_dataset.test_data[:100].float()
    label = test_dataset.test_labels[:100]
    features = images.view(100, 784)
    tensorboard_writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
    return tensorboard_writer, callbacklist, train_loader, test_loader
Example #2
0
 def __init_callback(self):
     callback_params = {'epochs': self.args.epochs,
                        'samples': len(self.train_loader) * self.args.batch_size,
                        'steps': len(self.train_loader),
                        'metrics': {'acc': np.array([]),
                                    'loss': np.array([]),
                                    'val_acc': np.array([]),
                                    'val_loss': np.array([])}}
     callback_list = callbacks.CallbackList(
         [callbacks.BaseLogger(),
          callbacks.TQDMCallback(),
          ])
     callback_list.set_params(callback_params)
     callback_list.set_model(self.model)
     return callback_list
Example #3
0
def prepareDatasetAndLogging(args):

    # choose the dataset
    if args.dataset == 'mnist':
        DatasetClass = datasets.MNIST
    elif args.dataset == 'fashion_mnist':
        DatasetClass = datasets.FashionMNIST
    else:
        raise ValueError('unknown dataset: ' + args.dataset +
                         ' try mnist or fashion_mnist')

    training_run_name = timeStamped(args.dataset + '_' + args.name)

    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}

    # Create the dataset, mnist or fasion_mnist
    dataset_dir = os.path.join(args.data_dir, args.dataset)
    training_run_dir = os.path.join(args.data_dir, training_run_name)

    if args.transform:
        print('Using Data Augmentation!')
        train_dataset = DatasetClass(
            dataset_dir,
            train=True,
            download=True,
            transform=transforms.Compose([
                transforms.RandomRotation(5),
                transforms.ColorJitter(),
                transforms.RandomResizedCrop(28, scale=(0.9, 1.0)),
                transforms.ToTensor(),
                transforms.Normalize((0.1307, ), (0.3081, ))
            ]))
    else:
        train_dataset = DatasetClass(dataset_dir,
                                     train=True,
                                     download=True,
                                     transform=transforms.Compose([
                                         transforms.ToTensor(),
                                         transforms.Normalize((0.1307, ),
                                                              (0.3081, ))
                                     ]))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)

    test_dataset = DatasetClass(dataset_dir,
                                train=False,
                                transform=transforms.Compose([
                                    transforms.ToTensor(),
                                    transforms.Normalize((0.1307, ),
                                                         (0.3081, ))
                                ]))

    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.test_batch_size,
                                              shuffle=True,
                                              **kwargs)

    # Set up visualization and progress status update code
    callback_params = {
        'epochs': args.epochs,
        'samples': len(train_loader) * args.batch_size,
        'steps': len(train_loader),
        'metrics': {
            'acc': np.array([]),
            'loss': np.array([]),
            'val_acc': np.array([]),
            'val_loss': np.array([])
        }
    }

    if args.print_log:
        output_on_train_end = os.sys.stdout
    else:
        output_on_train_end = None

    callbacklist = callbacks.CallbackList([
        callbacks.BaseLogger(),
        callbacks.TQDMCallback(),
        callbacks.CSVLogger(filename=training_run_dir + training_run_name +
                            '.csv',
                            output_on_train_end=output_on_train_end)
    ])

    callbacklist.set_params(callback_params)

    tensorboard_writer = SummaryWriter(log_dir=training_run_dir,
                                       comment=args.dataset +
                                       '_embedding_training')

    return tensorboard_writer, callbacklist, train_loader, test_loader
Example #4
0
    # Set up visualization and progress status update code
    callback_params = {'epochs': args.epochs,
                       'samples': len(train_loader) * args.batch_size,
                       'steps': len(train_loader),
                       'metrics': {'acc': np.array([]),
                                   'loss': np.array([]),
                                   'val_acc': np.array([]),
                                   'val_loss': np.array([])}}
    if args.print_log:
        output_on_train_end = os.sys.stdout
    else:
        output_on_train_end = None

    callbacklist = callbacks.CallbackList(
        [callbacks.BaseLogger(),
         callbacks.TQDMCallback(),
         callbacks.CSVLogger(filename=training_run_dir + training_run_name + '.csv',
                             output_on_train_end=output_on_train_end)])
    callbacklist.set_params(callback_params)

    tensorboard_writer = SummaryWriter(log_dir=training_run_dir, comment=args.dataset + '_embedding_training')

    # show some image examples in tensorboard projector with inverted color
    images = 255 - test_dataset.test_data[:100].float()
    label = test_dataset.test_labels[:100]
    features = images.view(100, 784)
    tensorboard_writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))
    return tensorboard_writer, callbacklist, train_loader, test_loader


# TODO Add classes for every option listed under the --model parser argument above.