Example #1
0
def tab_install(figsize, install_cap, colors, names, nodes, table_font,
                title_font, directory, conversion, style, v_round, fig_format,
                kind, unit):

    import matplotlib.pyplot as plt

    from calliope_graph.graphs import style_check

    style = style_check(style)
    plt.style.use(style)

    install_cap = install_cap * conversion
    install_cap = install_cap.round(v_round)

    if kind == 'table':

        fig, (ax) = plt.subplots(1, figsize=figsize)
        table = plt.table(cellText=install_cap.values,
                          rowColours=colors[install_cap.index],
                          rowLabels=names[install_cap.index],
                          colLabels=nodes,
                          loc='upper center',
                          rowLoc='center',
                          colLoc='center',
                          cellLoc='center')

        table.set_fontsize(table_font)
        table.scale(1, 2)
        plt.box(on=None)
        ax = plt.gca()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)

    elif kind == 'bar':

        install_cap.columns = install_cap.columns.to_list()
        install_cap.T.plot(kind='bar',
                           stacked=True,
                           color=colors[install_cap.index],
                           figsize=figsize)
        plt.legend(bbox_to_anchor=(1.05, 1),
                   loc='upper left',
                   borderaxespad=0.,
                   frameon=True,
                   labels=names[install_cap.index])

        plt.xlabel('Nodes')
        plt.ylabel(unit)

    else:
        raise ValueError(
            '/kind/ should be one of the followings: \n 1. /table/ \n 2. /bar/'
        )

    plt.title('Installed Capacity', fontsize=title_font)

    plt.savefig('{}\{}_installed_cap.{}'.format(directory, kind, fig_format),
                bbox_inches='tight',
                dpi=150)
Example #2
0
def cap_f_bar(nodes, fig_format, style, title_font, figsize, directory,
              cap_f_inp, colors, names, kind, table_font, v_round):

    import matplotlib.pyplot as plt
    from calliope_graph.graphs import style_check

    cap_f = cap_f_inp.copy()
    style = style_check(style)
    plt.style.use(style)

    colors = colors[cap_f.index]
    cap_f.index = names[cap_f.index]
    cap_f = cap_f.round(v_round)

    if kind == 'bar':

        for i in nodes:

            cap_f[i].plot(kind='bar',
                          stacked=True,
                          color=colors,
                          figsize=figsize,
                          legend=False)

            plt.title('{} capacity factor'.format(names[i]),
                      fontsize=title_font)
            plt.savefig('{}\{}capacity_factor.{}'.format(
                directory, i, fig_format),
                        bbox_inches='tight',
                        dpi=150)
            plt.show()

    elif kind == 'table':

        fig, (ax) = plt.subplots(1, figsize=figsize)
        table = plt.table(cellText=cap_f.values,
                          rowColours=colors,
                          rowLabels=cap_f.index,
                          colLabels=nodes,
                          loc='upper center',
                          rowLoc='center',
                          colLoc='center',
                          cellLoc='center')

        table.set_fontsize(table_font)
        table.scale(1, 2)
        plt.box(on=None)
        ax = plt.gca()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)

        plt.title('Capacity Factor', fontsize=title_font)

        plt.savefig('{}\system_capacity_factor.{}'.format(
            directory, fig_format),
                    bbox_inches='tight',
                    dpi=150)

    else:
        raise ValueError(
            '/kind/ should be one of the followings: \n 1. /table/ \n 2. /bar/'
        )
Example #3
0
def node_disp(nodes, fig_format, unit, conversion, style, date_format,
              title_font, production, imports, exports, figsize, demand,
              colors, names, rotate, average, sp_techs, sp_nodes, directory,
              x_ticks):

    import matplotlib.pyplot as plt
    import matplotlib.dates as mdates
    from matplotlib import gridspec

    from calliope_graph.graphs import style_check
    from calliope_graph.matrixmaker import prod_imp_exp

    style = style_check(style)
    plt.style.use(style)

    if average == 'weekly':
        av = '1w'
    elif average == 'daily':
        av = '1d'
    elif average == 'monthly':
        av = '1m'
    elif average == 'hourly':
        av = '1h'
    elif average == 'yearly':
        av = '1y'

    else:
        raise ValueError(
            'Incorrect average type.\n Average can be one of the followings: {},{},{},{} and {}'
            .format('hourly', 'daily', 'weekly', 'monthly', 'yearly'))

    for i in nodes:

        data = prod_imp_exp(production, imports, exports, i)

        dem = demand[i].resample(av).mean()
        data0 = data[0].resample(av).mean()
        data1 = data[1].resample(av).mean()

        if sp_techs != None and i in sp_nodes:

            fig, (axs) = plt.subplots(2, figsize=figsize, sharex=True)
            gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])

            axs[1] = plt.subplot(gs[1])
            axs[0] = plt.subplot(gs[0], sharex=axs[1])

            plt.setp(axs[0].get_xticklabels(), visible=False)

            axs[0].margins(x=0)
            axs[0].margins(y=0.1)

            axs[1].margins(x=0)
            axs[1].margins(y=0.1)

            axs[0].plot(dem.index,
                        dem.values * conversion,
                        'black',
                        alpha=0.5,
                        linestyle='-',
                        label='Demand',
                        linewidth=1)

            # Drawing positivie numbers
            axs[0].stackplot(data0.index,
                             data0.values.T * conversion,
                             colors=colors[data0.columns],
                             labels=names[data0.columns])

            # Drawing negative numbers
            axs[0].stackplot(data1.index,
                             data1.values.T * conversion,
                             colors=colors[data1.columns],
                             labels=names[data1.columns])

            axs[0].legend(bbox_to_anchor=(1.05, 1),
                          loc='upper left',
                          borderaxespad=0.,
                          frameon=True)

            axs[1].stackplot(data0.index,
                             data0[sp_techs].values.T * conversion,
                             colors=colors[sp_techs])

            # xticks properties
            xfmt = mdates.DateFormatter(date_format)
            axs[1].xaxis.set_major_formatter(xfmt)
            axs[1].tick_params(axis='x', rotation=rotate)

            if x_ticks == 'name':
                ticks = date2name(list(data0.index),
                                  list(data0.index.month_name()))
                plt.xticks(ticks=ticks[0], labels=ticks[1], rotation=rotate)
                axs[1].set_xticks(axs[1].get_xticks()[0:12])

        else:

            fig, (ax) = plt.subplots(1, figsize=figsize)
            ax.margins(x=0)
            ax.margins(y=0.1)

            # Drawing demand line
            plt.plot(dem.index,
                     dem.values * conversion,
                     'black',
                     alpha=0.5,
                     linestyle='-',
                     label='Demand',
                     linewidth=1)

            # Drawing positivie numbers
            plt.stackplot(data0.index,
                          data0.values.T * conversion,
                          colors=colors[data0.columns],
                          labels=names[data0.columns])

            # Drawing negative numbers
            plt.stackplot(data1.index,
                          data1.values.T * conversion,
                          colors=colors[data1.columns],
                          labels=names[data1.columns])

            # Legend properties
            plt.legend(bbox_to_anchor=(1.05, 1),
                       loc='upper left',
                       borderaxespad=0.,
                       frameon=True)

            # xticks properties
            xfmt = mdates.DateFormatter(date_format)
            ax.xaxis.set_major_formatter(xfmt)
            plt.xticks(rotation=rotate)

            # labels
            plt.xlabel('Date')
            plt.ylabel(unit)

            if x_ticks == 'name':
                ticks = date2name(list(data0.index),
                                  list(data0.index.month_name()))
                plt.xticks(ticks=ticks[0], labels=ticks[1], rotation=rotate)
                ax.set_xticks(ax.get_xticks()[0:12])

        # Title
        plt.title('{} Dispatch'.format(names[i]), fontsize=title_font)

        # saving

        fig.savefig('{}\{}_{}_dispatch.{}'.format(directory, i, average,
                                                  fig_format),
                    dpi=fig.dpi,
                    bbox_inches='tight')
        plt.show()
Example #4
0
def sys_pie(rational, fig_format, unit, conversion, kind, style, title_font,
            production, imports, exports, figsize, colors, names, directory,
            table_font, v_round, demand):

    import matplotlib.pyplot as plt

    from calliope_graph.graphs import style_check

    from calliope_graph.matrixmaker import pie_prod
    from calliope_graph.matrixmaker import pie_cons
    from calliope_graph.matrixmaker import system_matrix

    style = style_check(style)
    plt.style.use(style)

    production = system_matrix(production, demand)
    production = production[1]

    data = pie_prod(production, kind)

    if kind == 'absolute':
        data = data * conversion

    fig, (ax1, ax2) = plt.subplots(nrows=1,
                                   ncols=2,
                                   figsize=figsize,
                                   gridspec_kw={'width_ratios': [3, 1]})

    ax1.pie(data['Production'],
            shadow=False,
            colors=colors[data.index],
            startangle=90)

    ax2.patch.set_visible(False)
    ax2.get_xaxis().set_visible(False)
    ax2.get_yaxis().set_visible(False)

    l, b, w, h = ax1.get_position().bounds
    ll, bb, ww, hh = ax2.get_position().bounds
    ax2.set_position([ll * 0.85, b, w, h])
    ax2.axis('off')

    if kind == 'share':
        tab_label = '%'

    else:
        tab_label = unit

    data = data.round(v_round)

    table = ax2.table(cellText=data.values,
                      rowColours=colors[data.index],
                      rowLabels=names[data.index],
                      colLabels=[tab_label],
                      loc='center',
                      rowLoc='center',
                      colLoc='center',
                      cellLoc='center')

    table.auto_set_font_size(False)

    table.scale(0.4, 3)
    table.set_fontsize(table_font)

    fig.suptitle('System', fontsize=title_font, horizontalalignment='left')

    plt.show()
    fig.savefig('{}\system_{}_pie.{}'.format(directory, kind, fig_format),
                dpi=fig.dpi,
                bbox_inches='tight')
Example #5
0
def nod_pie(nodes, rational, fig_format, unit, conversion, kind, style,
            title_font, production, imports, exports, figsize, colors, names,
            directory, table_font, v_round):

    import matplotlib.pyplot as plt

    from calliope_graph.graphs import style_check

    from calliope_graph.matrixmaker import pie_prod
    from calliope_graph.matrixmaker import pie_cons

    style = style_check(style)
    plt.style.use(style)

    for i in nodes:

        if rational == 'production':
            data = pie_prod(production[i], kind)
        elif rational == 'consumption':
            data = pie_cons(production[i], imports[i], exports[i], kind)
            #print(data)
        else:
            raise ValueError(
                'rational could be one of the follwoings: \n 1. /production/ \n 2. /consumption/'
            )

        if kind == 'absolute':
            data = data * conversion

        fig, (ax1, ax2) = plt.subplots(nrows=1,
                                       ncols=2,
                                       figsize=figsize,
                                       gridspec_kw={'width_ratios': [3, 1]})

        ax1.pie(data['Production'],
                shadow=False,
                colors=colors[data.index],
                startangle=90)

        ax2.patch.set_visible(False)
        ax2.get_xaxis().set_visible(False)
        ax2.get_yaxis().set_visible(False)

        l, b, w, h = ax1.get_position().bounds
        ll, bb, ww, hh = ax2.get_position().bounds
        ax2.set_position([ll * 0.85, b, w, h])
        ax2.axis('off')

        if kind == 'share':
            tab_label = '%'

        else:
            tab_label = unit

        data = data.round(v_round)

        table = ax2.table(cellText=data.values,
                          rowColours=colors[data.index],
                          rowLabels=names[data.index],
                          colLabels=[tab_label],
                          loc='center',
                          rowLoc='center',
                          colLoc='center',
                          cellLoc='center')

        table.auto_set_font_size(False)

        table.scale(0.4, 3)
        table.set_fontsize(table_font)

        fig.suptitle('{} '.format(names[i]), fontsize=title_font)

        plt.show()
        fig.savefig('{}\{}_{}_pie.{}'.format(directory, i, kind, fig_format),
                    dpi=fig.dpi,
                    bbox_inches='tight')
Example #6
0
def sys_disp(rational, fig_format, unit, conversion, style, date_format,
             title_font, production, imports, exports, figsize, demand, colors,
             names, rotate, average, sp_techs, sp_nodes, directory, x_ticks):

    import matplotlib.pyplot as plt
    import matplotlib.dates as mdates
    from matplotlib import gridspec

    from calliope_graph.graphs import style_check
    from calliope_graph.matrixmaker import system_matrix

    style = style_check(style)
    plt.style.use(style)

    if average == 'weekly':
        av = '1w'
    elif average == 'daily':
        av = '1d'
    elif average == 'monthly':
        av = '1m'
    elif average == 'hourly':
        av = '1h'
    elif average == 'yearly':
        av = '1y'

    else:
        raise ValueError(
            'Incorrect average type.\n Average can be one of the followings: {},{},{},{} and {}'
            .format('hourly', 'daily', 'weekly', 'monthly', 'yearly'))

    data = system_matrix(production, demand)

    demand = data[0]

    if rational == 'techs':
        production = data[1]
        if sp_nodes:
            raise ValueError(
                'For /techs/ rational, specific nodes cannot be plotted.')

    elif rational == 'nodes':
        production = data[2]
        if sp_techs:
            raise ValueError(
                'For /nodes/ rational, specific techs cannot be plotted.')

    else:
        raise ValueError(
            'rational could be one of the followings: \n 1. techs : plotting the graph based on the technologies. \n 2. nodes: Plotting the graph based on the nodes'
        )

    specific = None
    if sp_techs:
        specific = sp_techs
    elif sp_nodes:
        specific = sp_nodes

    demand = demand.resample(av).mean()
    production = production.resample(av).mean()

    if specific:

        fig, (axs) = plt.subplots(2, figsize=figsize, sharex=True)
        gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])

        axs[1] = plt.subplot(gs[1])
        axs[0] = plt.subplot(gs[0], sharex=axs[1])

        plt.setp(axs[0].get_xticklabels(), visible=False)

        axs[0].margins(x=0)
        axs[0].margins(y=0.1)

        axs[1].margins(x=0)
        axs[1].margins(y=0.1)

        axs[0].plot(demand.index,
                    demand.values * conversion,
                    'black',
                    alpha=0.5,
                    linestyle='-',
                    label='Demand',
                    linewidth=0.5)

        # Drawing positivie numbers
        axs[0].stackplot(production.index,
                         production.values.T * conversion,
                         colors=colors[production.columns],
                         labels=names[production.columns])

        # Drawing negative numbers
        #axs[0].stackplot(data1.index,data1.values.T*conversion,colors=colors[data1.columns],labels=names[data1.columns])

        axs[0].legend(bbox_to_anchor=(1.05, 1),
                      loc='upper left',
                      borderaxespad=0.,
                      frameon=True)

        axs[1].stackplot(production.index,
                         production[specific].values.T * conversion,
                         colors=colors[specific])

        # xticks properties
        xfmt = mdates.DateFormatter(date_format)
        axs[1].xaxis.set_major_formatter(xfmt)
        axs[1].tick_params(axis='x', rotation=rotate)

        if x_ticks == 'name':
            ticks = date2name(list(production.index),
                              list(production.index.month_name()))
            plt.xticks(ticks=ticks[0], labels=ticks[1], rotation=rotate)
            axs[1].set_xticks(axs[1].get_xticks()[0:12])
    else:

        fig, (ax) = plt.subplots(1, figsize=figsize)
        ax.margins(x=0)
        ax.margins(y=0.1)

        # Drawing demand line
        plt.plot(demand.index,
                 demand.values * conversion,
                 'black',
                 alpha=0.5,
                 linestyle='-',
                 label='Demand',
                 linewidth=3)

        # Drawing positivie numbers
        plt.stackplot(production.index,
                      production.values.T * conversion,
                      colors=colors[production.columns],
                      labels=names[production.columns])

        # Drawing negative numbers
        #plt.stackplot(data1.index,data1.values.T*conversion,colors=colors[data1.columns],labels=names[data1.columns])

        # Legend properties
        plt.legend(bbox_to_anchor=(1.05, 1),
                   loc='upper left',
                   borderaxespad=0.,
                   frameon=True)

        # xticks properties
        xfmt = mdates.DateFormatter(date_format)
        ax.xaxis.set_major_formatter(xfmt)
        plt.xticks(rotation=rotate)

        # labels
        plt.xlabel('Date')

        if x_ticks == 'name':
            ticks = date2name(list(production.index),
                              list(production.index.month_name()))
            plt.xticks(ticks=ticks[0], labels=ticks[1], rotation=rotate)
            ax.set_xticks(ax.get_xticks()[0:12])

    plt.ylabel(unit)
    plt.title('System Dispatch', fontsize=title_font)

    fig.savefig('{}\system{}_dispatch.{}'.format(directory, average,
                                                 fig_format),
                dpi=fig.dpi,
                bbox_inches='tight')
    plt.show()