Example #1
0
 def _conductance_input_sum_test_assert(
     self,
     model: Module,
     target_layer: Module,
     test_input: TensorOrTupleOfTensors,
     test_baseline: Optional[Union[Tensor, int, float,
                                   Tuple[Union[Tensor, int, float],
                                         ...]]] = None,
 ):
     layer_cond = LayerConductance(model, target_layer)
     attributions = cast(
         Tensor,
         layer_cond.attribute(
             test_input,
             baselines=test_baseline,
             target=0,
             n_steps=500,
             method="gausslegendre",
         ),
     )
     neuron_cond = NeuronConductance(model, target_layer)
     for i in range(attributions.shape[1]):
         for j in range(attributions.shape[2]):
             for k in range(attributions.shape[3]):
                 neuron_vals = neuron_cond.attribute(
                     test_input,
                     (i, j, k),
                     baselines=test_baseline,
                     target=0,
                     n_steps=500,
                 )
                 for n in range(attributions.shape[0]):
                     self.assertAlmostEqual(
                         torch.sum(neuron_vals[n]).item(),
                         attributions[n, i, j, k].item(),
                         delta=0.005,
                     )
Example #2
0
    def test_matching_layer_tuple_selector_fn(self) -> None:
        net = BasicModel_MultiLayer(multi_input_module=True)
        inp = torch.tensor([[0.0, 6.0, 0.0]])

        lc = LayerConductance(net, net.multi_relu)
        layer_attr = lc.attribute(inp,
                                  target=0,
                                  n_steps=500,
                                  method="gausslegendre")
        nc = NeuronConductance(net, net.multi_relu)
        for i in range(len(layer_attr)):
            for j in range(layer_attr[i].shape[1]):
                neuron_attr = nc.attribute(
                    inp,
                    lambda x: x[i][:, j],
                    target=0,
                    n_steps=500,
                    method="gausslegendre",
                )
                self.assertAlmostEqual(
                    neuron_attr.sum().item(),
                    layer_attr[i][0][j].item(),
                    delta=0.005,
                )