import os import sys import tensorflow as tf from tensorflow.keras.callbacks import ModelCheckpoint root_path = os.path.abspath(os.path.join('..')) if root_path not in sys.path: sys.path.append(root_path) import config from cars_loader import load_cars, build_dataset from ssd_utils.ssd_loss import SSDLoss from utils import import_by_name, train_test_split_tensors, MeanAveragePrecisionCallback # Load train and validation data train_image_paths, train_bnd_boxes = load_cars(split='train') valid_image_paths, valid_bnd_boxes = load_cars(split='valid') valid_data = build_dataset(valid_image_paths, valid_bnd_boxes, image_size=config.IMAGE_SIZE, batch_size=config.BATCH_SIZE) for run in range(1, config.NUM_RUNS + 1): weights_dir = 'weights_{}'.format(run) history_dir = 'history_{}'.format(run) os.makedirs(weights_dir, exist_ok=True) os.makedirs(history_dir, exist_ok=True) for architecture in config.ARCHITECTURES:
import pandas as pd import os import sys import tensorflow as tf root_path = os.path.abspath('..') if root_path not in sys.path: sys.path.append(root_path) import config_naive_pasting_ablation as config from cars_loader import load_cars, build_dataset from ssd_utils import output_encoder from ssd_utils.metrics import MeanAveragePrecision from utils import import_by_name, MeanAveragePrecisionCallback test_image_paths, test_bnd_boxes = load_cars(split='test') test_data = build_dataset(test_image_paths, test_bnd_boxes, image_size=config.IMAGE_SIZE, batch_size=config.BATCH_SIZE) meanAP_metric = MeanAveragePrecision() results = {'architecture': []} for run in range(1, config.NUM_RUNS + 1): results['run_{}'.format(run)] = [] for architecture in config.ARCHITECTURES: model_class = import_by_name('ssd_utils.networks.' + architecture) model = model_class(num_classes=len(config.CLASSES))