class CartPoleTraining: """ Training cartpole using cross entropy agoritham based on the code from the book 'Deep Reinforcement Learning Hands-On' """ Episode = namedtuple('Episode', field_names=['reward', 'steps']) EpisodeStep = namedtuple('EpisodeStep', field_names=['observation', 'action']) def __init__(self) -> None: self.cartpole = CartPole() def iterate_batches(self, net, batch_size): batch = [] episode_reward = 0.0 episode_steps = [] #start the episode self.cartpole.episode_start() state = self.cartpole.get_state() obs = self.cartpole.state_to_gym(state) sm = nn.Softmax(dim=1) while True: obs_v = torch.FloatTensor([obs]) act_probs_v = sm(net(obs_v)) act_probs = act_probs_v.data.numpy()[0] action = np.random.choice(len(act_probs), p=act_probs) bonsai_action = self.cartpole.gym_to_action(action) self.cartpole.episode_step(bonsai_action) is_done = self.cartpole.halted() reward = self.cartpole.get_last_reward() next_obs = self.cartpole.state_to_gym(self.cartpole.get_state()) episode_reward += reward step = self.EpisodeStep(observation=obs, action=action) episode_steps.append(step) if is_done: e = self.Episode(reward=episode_reward, steps=episode_steps) batch.append(e) episode_reward = 0.0 episode_steps = [] self.cartpole.episode_finish("") self.cartpole.episode_start() state = self.cartpole.get_state() next_obs = self.cartpole.state_to_gym(state) if len(batch) == batch_size: yield batch batch = [] obs = next_obs def filter_batch(self, batch, percentile): rewards = list(map(lambda s: s.reward, batch)) reward_bound = np.percentile(rewards, percentile) reward_mean = float(np.mean(rewards)) train_obs = [] train_act = [] for reward, steps in batch: if reward < reward_bound: continue train_obs.extend(map(lambda step: step.observation, steps)) train_act.extend(map(lambda step: step.action, steps)) train_obs_v = torch.FloatTensor(train_obs) train_act_v = torch.LongTensor(train_act) return train_obs_v, train_act_v, reward_bound, reward_mean def train(self): obs_size = self.cartpole._env.unwrapped.observation_space.shape[0] n_actions = self.cartpole._env.unwrapped.action_space.n net = Net(obs_size, HIDDEN_SIZE, n_actions) objective = nn.CrossEntropyLoss() optimizer = optim.Adam(params=net.parameters(), lr=0.01) writer = SummaryWriter(comment="-cartpole") for iter_no, batch in enumerate(self.iterate_batches(net, BATCH_SIZE)): obs_v, acts_v, reward_b, reward_m = self.filter_batch( batch, PERCENTILE) optimizer.zero_grad() action_scores_v = net(obs_v) loss_v = objective(action_scores_v, acts_v) loss_v.backward() optimizer.step() #env.render() print("%d: loss=%.3f, reward_mean=%.1f, rw_bound=%.1f" % (iter_no, loss_v.item(), reward_m, reward_b)) writer.add_scalar("loss", loss_v.item(), iter_no) writer.add_scalar("reward_bound", reward_b, iter_no) writer.add_scalar("reward_mean", reward_m, iter_no) if reward_m > 199: print("Solved!") break writer.close()
writer = SummaryWriter() # we will use our environment (wrapper of OpenAI env) cartpole = CartPole() # specify which agent you want to use, # BonsaiAgent that uses trained Brain or # RandomAgent that randomly selects next action agent = BonsaiAgent() episode_count = 100 try: for i in range(episode_count): #start a new episode and get the new state cartpole.episode_start() state = cartpole.get_state() cum_reward = 0 while True: #get the action from the agent (based on the current state) action = agent.act(state) #do the next step of the simulation and get the new state cartpole.episode_step(action) state = cartpole.get_state() #get the last reward and add it the episode reward reward = cartpole.get_last_reward() cum_reward += reward