def __combineResiduals(residualImages,fluxImages,iteration=0): from casa import immath imageList = [] num = '(' den = '(' for i in range(len(residualImages)): imageList.append(residualImages[i]) imageList.append(fluxImages[i]) tempNum = 'IM'+str(2*i)+'*IM'+str(2*i+1) tempDen = 'IM'+str(2*i+1) if i < len(residualImages) -1: num = num + tempNum + '+' den = den + tempDen + '+' else: num = num + tempNum + ')' den = den + tempDen + ')' expr = num + '/' + den filename = 'residualCombine.' + str(iteration) + '.im' try: with open(filename + '/table.f0'): combine = False print 'File ' + filename + ' exists' except IOError: combine = True if combine: immath(imagename=imageList, outfile=filename, expr=expr) return filename
def __combineModels(modelImages,iteration=0): from casa import immath filename = 'modelCombine.' + str(iteration) try: with open(filename + '/table.f0'): combine = False print 'File ' + filename + ' exists' except IOError: combine = True if combine: immath(imagename=modelImages, outfile=filename, expr = 'IM0 + IM1') return filename
def make_SBimage(image='',cellsize=None,beamsize=None,distance=None, extension='.image'): from casa import immath,imhead beamarea = 1.13*beamsize**2/cellsize**2 massCoeff = 2.36e5 * distance**2 / beamarea pcPerArcsec = distance *1e6 / 206265. pcPerPixel = cellsize * pcPerArcsec pixSB = massCoeff / pcPerPixel**2 # units in Msun per pixel immath(imagename=image + extension, outfile=image + '.sb.image', mode='evalexpr', expr='IM0*' + str(pixSB)) imhead(imagename=image + '.sb.image', mode='put', hdkey='bunit', hdvalue='', hdcomment='Units Msun/pc^-2')
def make_SBimage(image='', cellsize=None, beamsize=None, distance=None, extension='.image'): from casa import immath, imhead beamarea = 1.13 * beamsize**2 / cellsize**2 massCoeff = 2.36e5 * distance**2 / beamarea pcPerArcsec = distance * 1e6 / 206265. pcPerPixel = cellsize * pcPerArcsec pixSB = massCoeff / pcPerPixel**2 # units in Msun per pixel immath(imagename=image + extension, outfile=image + '.sb.image', mode='evalexpr', expr='IM0*' + str(pixSB)) imhead(imagename=image + '.sb.image', mode='put', hdkey='bunit', hdvalue='', hdcomment='Units Msun/pc^-2')
def run(self): """ The run method creates the BDP. Parameters ---------- None Returns ------- None """ dt = utils.Dtime("ContinuumSub") # tagging time self._summary = {} # an ADMIT summary will be created here contsub = self.getkey("contsub") pad = self.getkey("pad") fitorder = self.getkey("fitorder") # x.im -> x.cim + x.lim # b1 = input spw BDP # b1a = optional input {Segment,Line}List # b1b = optional input Cont Map (now deprecated) # b2 = output line cube # b3 = output cont map b1 = self._bdp_in[0] f1 = b1.getimagefile(bt.CASA) b1a = self._bdp_in[1] # b1b = self._bdp_in[2] b1b = None # do not allow continuum maps to be input f2 = self.mkext(f1, 'lim') f3 = self.mkext(f1, 'cim') f3a = self.mkext(f1, 'cim3d') # temporary cube name, map is needed b2 = SpwCube_BDP(f2) b3 = Image_BDP(f3) self.addoutput(b2) self.addoutput(b3) taskinit.ia.open(self.dir(f1)) s = taskinit.ia.summary() nchan = s['shape'][ 2] # ingest has guarenteed this to the spectral axis if b1a != None: # if a LineList was given, use that if len(b1a.table) > 0: # this section of code actually works for len(ch0)==0 as well # ch0 = b1a.table.getFullColumnByName("startchan") ch1 = b1a.table.getFullColumnByName("endchan") if pad != 0: # can widen or narrow the segments if pad > 0: logging.info("pad=%d to widen the segments" % pad) else: logging.info("pad=%d to narrow the segments" % pad) ch0 = np.where(ch0 - pad < 0, 0, ch0 - pad) ch1 = np.where(ch1 + pad >= nchan, nchan - 1, ch1 + pad) s = Segments(ch0, ch1, nchan=nchan) ch = s.getchannels( True) # take the complement of lines as the continuum else: ch = range( nchan ) # no lines? take everything as continuum (probably bad) logging.warning( "All channels taken as continuum. Are you sure?") elif len(contsub) > 0: # else if contsub[] was supplied manually s = Segments(contsub, nchan=nchan) ch = s.getchannels() else: raise Exception, "No contsub= or input LineList given" if len(ch) > 0: taskinit.ia.open(self.dir(f1)) taskinit.ia.continuumsub(outline=self.dir(f2), outcont=self.dir(f3a), channels=ch, fitorder=fitorder) taskinit.ia.close() dt.tag("continuumsub") casa.immoments( self.dir(f3a), -1, outfile=self.dir(f3)) # mean of the continuum cube (f3a) utils.remove(self.dir(f3a)) # is the continuum map (f3) dt.tag("immoments") if b1b != None: # this option is now deprecated (see above, by setting b1b = None), no user option allowed # there is likely a mis-match in the beam, given how they are produced. So it's safer to # remove this here, and force the flow to smooth manually print "Adding back in a continuum map" f1b = b1b.getimagefile(bt.CASA) f1c = self.mkext(f1, 'sum') # @todo notice we are not checking for conforming mapsize and WCS # and let CASA fail out if we've been bad. casa.immath([self.dir(f3), self.dir(f1b)], 'evalexpr', self.dir(f1c), 'IM0+IM1') utils.rename(self.dir(f1c), self.dir(f3)) dt.tag("immath") else: raise Exception, "No channels left to determine continuum. pad=%d too large?" % pad # regression rdata = casautil.getdata(self.dir(f3)).data logging.regression("CSUB: %f %f" % (rdata.min(), rdata.max())) # Create two output images for html and their thumbnails, too implot = ImPlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) implot.plotter(rasterfile=f3, figname=f3, colorwedge=True) figname = implot.getFigure(figno=implot.figno, relative=True) thumbname = implot.getThumbnail(figno=implot.figno, relative=True) b2.setkey("image", Image(images={bt.CASA: f2})) b3.setkey("image", Image(images={bt.CASA: f3, bt.PNG: figname})) dt.tag("implot") if len(ch) > 0: taskargs = "pad=%d fitorder=%d contsub=%s" % (pad, fitorder, str(contsub)) imcaption = "Continuum map" self._summary["continuumsub"] = SummaryEntry( [figname, thumbname, imcaption], "ContinuumSub_AT", self.id(True), taskargs) dt.tag("done") dt.end()
def run(self): """ The run method creates the BDP. Parameters ---------- None Returns ------- None """ dt = utils.Dtime("ContinuumSub") # tagging time self._summary = {} # an ADMIT summary will be created here contsub = self.getkey("contsub") pad = self.getkey("pad") fitorder = self.getkey("fitorder") # x.im -> x.cim + x.lim # b1 = input spw BDP # b1a = optional input {Segment,Line}List # b1b = optional input Cont Map (now deprecated) # b2 = output line cube # b3 = output cont map b1 = self._bdp_in[0] f1 = b1.getimagefile(bt.CASA) b1a = self._bdp_in[1] # b1b = self._bdp_in[2] b1b = None # do not allow continuum maps to be input f2 = self.mkext(f1,'lim') f3 = self.mkext(f1,'cim') f3a = self.mkext(f1,'cim3d') # temporary cube name, map is needed b2 = SpwCube_BDP(f2) b3 = Image_BDP(f3) self.addoutput(b2) self.addoutput(b3) taskinit.ia.open(self.dir(f1)) s = taskinit.ia.summary() nchan = s['shape'][2] # ingest has guarenteed this to the spectral axis if b1a != None: # if a LineList was given, use that if len(b1a.table) > 0: # this section of code actually works for len(ch0)==0 as well # ch0 = b1a.table.getFullColumnByName("startchan") ch1 = b1a.table.getFullColumnByName("endchan") if pad != 0: # can widen or narrow the segments if pad > 0: logging.info("pad=%d to widen the segments" % pad) else: logging.info("pad=%d to narrow the segments" % pad) ch0 = np.where(ch0-pad < 0, 0, ch0-pad) ch1 = np.where(ch1+pad >= nchan, nchan-1, ch1+pad) s = Segments(ch0,ch1,nchan=nchan) ch = s.getchannels(True) # take the complement of lines as the continuum else: ch = range(nchan) # no lines? take everything as continuum (probably bad) logging.warning("All channels taken as continuum. Are you sure?") elif len(contsub) > 0: # else if contsub[] was supplied manually s = Segments(contsub,nchan=nchan) ch = s.getchannels() else: raise Exception,"No contsub= or input LineList given" if len(ch) > 0: taskinit.ia.open(self.dir(f1)) taskinit.ia.continuumsub(outline=self.dir(f2),outcont=self.dir(f3a),channels=ch,fitorder=fitorder) taskinit.ia.close() dt.tag("continuumsub") casa.immoments(self.dir(f3a),-1,outfile=self.dir(f3)) # mean of the continuum cube (f3a) utils.remove(self.dir(f3a)) # is the continuum map (f3) dt.tag("immoments") if b1b != None: # this option is now deprecated (see above, by setting b1b = None), no user option allowed # there is likely a mis-match in the beam, given how they are produced. So it's safer to # remove this here, and force the flow to smooth manually print "Adding back in a continuum map" f1b = b1b.getimagefile(bt.CASA) f1c = self.mkext(f1,'sum') # @todo notice we are not checking for conforming mapsize and WCS # and let CASA fail out if we've been bad. casa.immath([self.dir(f3),self.dir(f1b)],'evalexpr',self.dir(f1c),'IM0+IM1') utils.rename(self.dir(f1c),self.dir(f3)) dt.tag("immath") else: raise Exception,"No channels left to determine continuum. pad=%d too large?" % pad # regression rdata = casautil.getdata(self.dir(f3)).data logging.regression("CSUB: %f %f" % (rdata.min(),rdata.max())) # Create two output images for html and their thumbnails, too implot = ImPlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) implot.plotter(rasterfile=f3,figname=f3,colorwedge=True) figname = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) b2.setkey("image", Image(images={bt.CASA:f2})) b3.setkey("image", Image(images={bt.CASA:f3, bt.PNG : figname})) dt.tag("implot") if len(ch) > 0: taskargs = "pad=%d fitorder=%d contsub=%s" % (pad,fitorder,str(contsub)) imcaption = "Continuum map" self._summary["continuumsub"] = SummaryEntry([figname,thumbname,imcaption],"ContinuumSub_AT",self.id(True),taskargs) dt.tag("done") dt.end()
def run(self): """ The run method creates the BDP Parameters ---------- None Returns ------- None """ dt = utils.Dtime("CubeSum") # tagging time self._summary = {} # an ADMIT summary will be created here numsigma = self.getkey("numsigma") # get the input keys sigma = self.getkey("sigma") use_lines = self.getkey("linesum") pad = self.getkey("pad") b1 = self._bdp_in[0] # spw image cube b1a = self._bdp_in[1] # cubestats (optional) b1b = self._bdp_in[2] # linelist (optional) f1 = b1.getimagefile(bt.CASA) taskinit.ia.open(self.dir(f1)) s = taskinit.ia.summary() nchan = s['shape'][2] if b1b != None: ch0 = b1b.table.getFullColumnByName("startchan") ch1 = b1b.table.getFullColumnByName("endchan") s = Segments(ch0,ch1,nchan=nchan) # @todo something isn't merging here as i would have expected, # e.g. test0.fits [(16, 32), (16, 30), (16, 29)] if pad > 0: for (c0,c1) in s.getsegmentsastuples(): s.append([c0-pad,c0]) s.append([c1,c1+pad]) s.merge() s.recalcmask() # print "PJT segments:",s.getsegmentsastuples() ns = len(s.getsegmentsastuples()) chans = s.chans(not use_lines) if use_lines: msum = s.getmask() else: msum = 1 - s.getmask() logging.info("Read %d segments" % ns) # print "chans",chans # print "msum",msum # from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping # examples are: ['boxcar',3] ['gaussian',7] ['hanning',5] smooth= [] sig_const = False # figure out if sigma is taken as constant in the cube if b1a == None: # if no 2nd BDP was given, sigma needs to be specified if sigma <= 0.0: raise Exception,"Neither user-supplied sigma nor CubeStats_BDP input given. One is required." else: sig_const = True # and is constant else: if sigma > 0: sigma = b1a.get("sigma") sig_const = True if sig_const: logging.info("Using constant sigma = %f" % sigma) else: logging.info("Using varying sigma per plane") infile = b1.getimagefile(bt.CASA) # ADMIT filename of the image (cube) bdp_name = self.mkext(infile,'csm') # morph to the new output name with replaced extension 'csm' image_out = self.dir(bdp_name) # absolute filename args = {"imagename" : self.dir(infile)} # assemble arguments for immoments() args["moments"] = 0 # only need moments=0 (or [0] is ok as well) args["outfile"] = image_out # note full pathname dt.tag("start") if sig_const: args["excludepix"] = [-numsigma*sigma, numsigma*sigma] # single global sigma if b1b != None: # print "PJT: ",chans args["chans"] = chans else: # @todo in this section bad channels can cause a fully masked cubesum = bad # cubestats input sigma_array = b1a.table.getColumnByName("sigma") # channel dependent sigma sigma_pos = sigma_array[np.where(sigma_array>0)] smin = sigma_pos.min() smax = sigma_pos.max() logging.info("sigma varies from %f to %f" % (smin,smax)) maxval = b1a.get("maxval") # max in cube nzeros = len(np.where(sigma_array<=0.0)[0]) # check bad channels if nzeros > 0: logging.warning("There are %d NaN channels " % nzeros) # raise Exception,"need to recode CubeSum or use constant sigma" dt.tag("grab_sig") if len(smooth) > 0: # see also LineID and others filter = Filter1D.Filter1D(sigma_array,smooth[0],**Filter1D.Filter1D.convertargs(smooth)) sigma_array = filter.run() dt.tag("smooth_sig") # create a CASA image copy for making the mirror sigma cube to mask against file = self.dir(infile) mask = file+"_mask" taskinit.ia.fromimage(infile=file, outfile=mask) nx = taskinit.ia.shape()[0] ny = taskinit.ia.shape()[1] nchan = taskinit.ia.shape()[2] taskinit.ia.fromshape(shape=[nx,ny,1]) plane = taskinit.ia.getchunk([0,0,0],[-1,-1,0]) # convenience plane for masking operation dt.tag("mask_sig") taskinit.ia.open(mask) dt.tag("open_mask") count = 0 for i in range(nchan): if sigma_array[i] > 0: if b1b != None: if msum[i]: taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1]) count = count + 1 else: taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1]) else: taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1]) count = count + 1 else: taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1]) taskinit.ia.close() logging.info("%d/%d channels used for CubeSum" % (count,nchan)) dt.tag("close_mask") names = [file, mask] tmp = file + '.tmp' if numsigma == 0.0: # hopefully this will also make use of the mask exp = "IM0[IM1<%f]" % (0.99*maxval) else: exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma) # print "PJT: exp",exp casa.immath(mode='evalexpr', imagename=names, expr=exp, outfile=tmp) args["imagename"] = tmp dt.tag("immath") casa.immoments(**args) dt.tag("immoments") if sig_const is False: # get rid of temporary files utils.remove(tmp) utils.remove(mask) # get the flux taskinit.ia.open(image_out) st = taskinit.ia.statistics() taskinit.ia.close() dt.tag("statistics") # report that flux, but there's no way to get the units from casa it seems # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA # imstat() does seem to know it. if st.has_key('flux'): rdata = [st['flux'][0],st['sum'][0]] logging.info("Total flux: %f (sum=%f)" % (st['flux'],st['sum'])) else: rdata = [st['sum'][0]] logging.info("Sum: %f (beam parameters missing)" % (st['sum'])) logging.regression("CSM: %s" % str(rdata)) # Create two output images for html and their thumbnails, too implot = ImPlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) implot.plotter(rasterfile=bdp_name,figname=bdp_name,colorwedge=True) figname = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) dt.tag("implot") thumbtype = bt.PNG # really should be correlated with self._plot_type!! # 2. Create a histogram of the map data # get the data for a histogram data = casautil.getdata(image_out,zeromask=True).compressed() dt.tag("getdata") # get the label for the x axis bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) auxname = bdp_name + "_histo" auxtype = bt.PNG # really should be correlated with self._plot_type!! myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of CubeSum: %s" % (bdp_name), thumbnail=True) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) images = {bt.CASA : bdp_name, bt.PNG : figname} casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) if hasattr(b1,"line"): # SpwCube doesn't have Line line = deepcopy(getattr(b1,"line")) if type(line) != type(Line): line = Line(name="Undetermined") else: line = Line(name="Undetermined") # fake a Line if there wasn't one self.addoutput(Moment_BDP(xmlFile=bdp_name,moment=0,image=deepcopy(casaimage),line=line)) imcaption = "Integral (moment 0) of all emission in image cube" auxcaption = "Histogram of cube sum for image cube" taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma, str(smooth)) self._summary["cubesum"] = SummaryEntry([figname,thumbname,imcaption,auxname,auxthumb,auxcaption,bdp_name,infile],"CubeSum_AT",self.id(True),taskargs) dt.tag("done") dt.end()
def run(self): """ The run method, calculates the moments and creates the BDP(s) Parameters ---------- None Returns ------- None """ self._summary = {} momentsummary = [] dt = utils.Dtime("Moment") # variable to track if we are using a single cutoff for all moment maps allsame = False moments = self.getkey("moments") numsigma = self.getkey("numsigma") mom0clip = self.getkey("mom0clip") # determine if there is only 1 cutoff or if there is a cutoff for each moment if len(moments) != len(numsigma): if len(numsigma) != 1: raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.") allsame = True # default moment file extensions, this is information copied from casa.immoments() momentFileExtensions = {-1: ".average", 0: ".integrated", 1: ".weighted_coord", 2: ".weighted_dispersion_coord", 3: ".median", 4: "", 5: ".standard_deviation", 6: ".rms", 7: ".abs_mean_dev", 8: ".maximum", 9: ".maximum_coord", 10: ".minimum", 11: ".minimum_coord", } logging.debug("MOMENT: %s %s %s" % (str(moments), str(numsigma), str(allsame))) # get the input casa image from bdp[0] # also get the channels the line actually covers (if any) bdpin = self._bdp_in[0] infile = bdpin.getimagefile(bt.CASA) chans = self.getkey("chans") # the basename of the moments, we will append _0, _1, etc. basename = self.mkext(infile, "mom") fluxname = self.mkext(infile, "flux") # beamarea = nppb(self.dir(infile)) beamarea = 1.0 # until we have it from the MOM0 map sigma0 = self.getkey("sigma") sigma = sigma0 ia = taskinit.iatool() dt.tag("open") # if no CubseStats BDP was given and no sigma was specified, find a # noise level via casa.imstat() if self._bdp_in[1] is None and sigma <= 0.0: raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff") elif self._bdp_in[1] is not None: sigma = self._bdp_in[1].get("sigma") # immoments is a bit peculiar. If you give one moment, it will use # exactly the outfile you picked for multiple moments, it will pick # extensions such as .integrated [0], .weighted_coord [1] etc. # we loop over the moments and will use the numeric extension instead. # Might be laborious loop for big input cubes # # arguments for immoments args = {"imagename" : self.dir(infile), "moments" : moments, "outfile" : self.dir(basename)} # set the channels if given if chans != "": args["chans"] = chans # error check the mom0clip input if mom0clip > 0.0 and not 0 in moments: logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.") # add moment0 to the list of computed moments, but it has to be first moments.insert(0,0) if not allsame: numsigma.insert(0, 2.0*sigma) if allsame: # this is only executed now if len(moments) > 1 and len(cutoff)==1 args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma] casa.immoments(**args) dt.tag("immoments-all") else: # this is execute if len(moments)==len(cutoff) , even when len=1 for i in range(len(moments)): args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma] args["moments"] = moments[i] args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]]) casa.immoments(**args) dt.tag("immoments-%d" % moments[i]) taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) if sigma0 > 0: taskargs = taskargs + " sigma=%.2f" % sigma0 if mom0clip > 0: taskargs = taskargs + " mom0clip=%g" % mom0clip if chans == "": taskargs = taskargs + " chans=all" else: taskargs = taskargs + " chans=%s" % str(chans) taskargs += ' <span style="background-color:white"> ' + basename.split('/')[0] + ' </span>' # generate the mask to be applied to all but moment 0 if mom0clip > 0.0: # get the statistics from mom0 map # this is usually a very biased map, so unclear if mom0sigma is all that reliable args = {"imagename": self.dir(infile)} stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0])) mom0sigma = float(stat["sigma"][0]) # generate a temporary masked file, mask will be copied to other moments args = {"imagename" : self.dir(basename + momentFileExtensions[0]), "expr" : 'IM0[IM0>%f]' % (mom0clip * mom0sigma), "outfile" : self.dir("mom0.masked") } casa.immath(**args) # get the default mask name ia.open(self.dir("mom0.masked")) defmask = ia.maskhandler('default') ia.close() dt.tag("mom0clip") # loop over moments to rename them to _0, _1, _2 etc. # apply a mask as well for proper histogram creation map = {} myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) for mom in moments: figname = imagename = "%s_%i" % (basename, mom) tempname = basename + momentFileExtensions[mom] # rename and remove the old one if there is one utils.rename(self.dir(tempname), self.dir(imagename)) # copy the moment0 mask if requested; this depends on that mom0 was done before if mom0clip > 0.0 and mom != 0: #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0]) #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0]) makemask(mode="copy", inpimage=self.dir("mom0.masked"), output="%s:%s" % (self.dir(imagename), defmask[0]), overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"), defmask[0])) ia.open(self.dir(imagename)) ia.maskhandler('set', defmask) ia.close() dt.tag("makemask") if mom == 0: beamarea = nppb(self.dir(imagename)) implot.plotter(rasterfile=imagename,figname=figname, colorwedge=True,zoom=self.getkey("zoom")) imagepng = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) images = {bt.CASA : imagename, bt.PNG : imagepng} thumbtype=bt.PNG dt.tag("implot") # get the data for a histogram (ia access is about 1000-2000 faster than imval()) map[mom] = casautil.getdata(self.dir(imagename)) data = map[mom].compressed() dt.tag("getdata") # make the histogram plot # get the label for the x axis bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit") # object for the caption objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative auxname = imagename + '_histo' auxtype = bt.PNG myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True) casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) if hasattr(self._bdp_in[0], "line"): # SpwCube doesn't have Line line = deepcopy(getattr(self._bdp_in[0], "line")) if not isinstance(line, Line): line = Line(name="Unidentified") else: # fake a Line if there wasn't one line = Line(name="Unidentified") # add the BDP to the output array self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom, image=deepcopy(casaimage), line=line)) dt.tag("ren+mask_%d" % mom) imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname) auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname) thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption, auxname, auxthumb, auxcaption, infile] momentsummary.append(thismomentsummary) if map.has_key(0) and map.has_key(1) and map.has_key(2): logging.debug("MAPs present: %s" % (map.keys())) # m0 needs a new mask, inherited from the more restricted m1 (and m2) m0 = ma.masked_where(map[1].mask,map[0]) m1 = map[1] m2 = map[2] m01 = m0*m1 m02 = m0*m1*m1 m22 = m0*m2*m2 sum0 = m0.sum() vmean = m01.sum()/sum0 # lacking the full 3D cube, get two estimates and take the max sig1 = math.sqrt(m02.sum()/sum0 - vmean*vmean) sig2 = m2.max() #vsig = max(sig1,sig2) vsig = sig1 # consider clipping in the masked array (mom0clip) # @todo i can't use info from line, so just borrow basename for now for grepping # this also isn't really the flux, the points per beam is still in there loc = basename.rfind('/') sum1 = ma.masked_less(map[0],0.0).sum() # mom0clip # print out: LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0] s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9 s_line = line.frequency if loc>0: if basename[:loc][0:2] == 'U_': # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band if abs(vmean) > vsig: vwarn = '*' else: vwarn = '' vlsr = vmean + (1.0-s_line/s_rest)*utils.c msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig) else: # for identified lines we'll assume the ID was correct and not bother with RESTFREQ msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig) else: msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL" ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig) logging.regression(msg) dt.tag("mom0flux") # create a histogram of flux per channel # grab the X coordinates for the histogram, we want them in km/s # restfreq should also be in summary restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9 # in GHz # print "PJT %.10f %.10f" % (restfreq,s_rest) imval0 = casa.imval(self.dir(infile)) freqs = imval0['coords'].transpose()[2]/1e9 x = (1-freqs/restfreq)*utils.c # h = casa.imstat(self.dir(infile), axes=[0,1]) if h.has_key('flux'): flux0 = h['flux'] else: flux0 = h['sum']/beamarea flux0sum = flux0.sum() * abs(x[1]-x[0]) # @todo make a flux1 with fluxes derived from a good mask flux1 = flux0 # construct histogram title = 'Flux Spectrum (%g)' % flux0sum xlab = 'VLSR (km/s)' ylab = 'Flux (Jy)' myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True) dt.tag("flux-spectrum") self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", self.id(True), taskargs) # get rid of the temporary mask if mom0clip > 0.0: utils.rmdir(self.dir("mom0.masked")) dt.tag("done") dt.end()
def run(self): # self._summary = {} # prepare to make a summary here dt = utils.Dtime("Ingest") # timer for debugging do_cbeam = True # enforce a common beam # pb = self.getkey('pb') do_pb = len(pb) > 0 use_pb = self.getkey("usepb") # create_mask = self.getkey('mask') # create a new mask ? box = self.getkey("box") # corners in Z, XY or XYZ edge = self.getkey("edge") # number of edge channels to remove restfreq = self.getkey("restfreq") # < 0 means not activated # smooth= could become deprecated, and/or include a decimation option to make it useful # again, Smooth_AT() does this also , at the cost of an extra cube to store smooth = self.getkey("smooth") # # vlsr = self.getkey("vlsr") # see also LineID, where this could be given again # first place a fits file in the admit project directory (symlink) # this is a bit involved, depending on if an absolute or relative path was # give to Ingest_AT(file=) fitsfile = self.getkey('file') if fitsfile[0] != os.sep: fitsfile = os.path.abspath(os.getcwd() + os.sep + fitsfile) logging.debug('FILE=%s' % fitsfile) if fitsfile[0] != os.sep: raise Exception,"Bad file=%s, expected absolute name",fitsfile # now determine if it could have been a CASA (or MIRIAD) image already # which we'll assume if it's a directory; this is natively supported by CASA # but there are tools where if you pass it a FITS or MIRIAD # MIRIAD is not recommended for serious work, especially big files, since there # is a performance penalty due to tiling. file_is_casa = casautil.iscasa(fitsfile) loc = fitsfile.rfind(os.sep) # find the '/' ffile0 = fitsfile[loc+1:] # basename.fits basename = self.getkey('basename') # (new) basename allowed (allow no dots?) if len(basename) == 0: basename = ffile0[:ffile0.rfind('.')] # basename logging.info("basename=%s" % basename) target = self.dir(ffile0) if not os.path.exists(target) : cmd = 'ln -s "%s" "%s"' % (fitsfile, target) logging.debug("CMD: %s" % cmd) os.system(cmd) readonly = False if file_is_casa: logging.debug("Assuming input %s is a CASA (or MIRIAD) image" % ffile0) bdpfile = self.mkext(basename,"im") if bdpfile == ffile0: logging.warning("No selections allowed on CASA image, since no alias was given") readonly = True b1 = SpwCube_BDP(bdpfile) self.addoutput(b1) b1.setkey("image", Image(images={bt.CASA:bdpfile})) # @todo b2 and PB? else: # construct the output name and construct the BDP based on the CASA image name # this also takes care of the behind the scenes alias= substitution bdpfile = self.mkext(basename,"im") if bdpfile == basename: raise Exception,"basename and bdpfile are the same, Ingest_AT needs a fix for this" b1 = SpwCube_BDP(bdpfile) self.addoutput(b1) if do_pb: print "doing the PB" bdpfile2 = self.mkext(basename,"pb") b2 = Image_BDP(bdpfile2) self.addoutput(b2) # @todo we should also set readonly=True if no box, no mask etc. and still an alias # that way it will speed up and not make a copy of the image ? # fni and fno are full (abspath) filenames, ready for CASA # fni is the same as fitsfile fni = self.dir(ffile0) fno = self.dir(bdpfile) if do_pb: fno2 = self.dir(bdpfile2) dt.tag("start") if file_is_casa: taskinit.ia.open(fni) else: if do_pb and use_pb: # @todo this needs a fix for the path for pb, only works if abs path is given # impbcor(im.fits,pb.fits,out.im,overwrite=True,mode='m') if False: # this may seem like a nice shortcut, to have the fits->casa conversion be done # internally in impbcor, but it's a terrible performance for big cubes. (tiling?) # we keep this code here, perhaps at some future time (mpi?) this performs better # @todo fno2 impbcor(fni,pb,fno,overwrite=True,mode='m') dt.tag("impbcor-1") else: # the better way is to convert FITS->CASA and then call impbcor() # the CPU savings are big, but I/O overhead can still be substantial taskinit.ia.fromfits('_pbcor',fni,overwrite=True) taskinit.ia.fromfits('_pb',pb,overwrite=True) dt.tag("impbcor-1f") if False: impbcor('_pbcor','_pb',fno,overwrite=True,mode='m') # @todo fno2 utils.remove('_pbcor') utils.remove('_pb') dt.tag("impbcor-2") else: # immath appears to be even faster (2x in CPU) # https://bugs.nrao.edu/browse/CAS-8299 # @todo this needs to be confirmed that impbcor is now good to go (r36078) casa.immath(['_pbcor','_pb'],'evalexpr',fno,'IM0*IM1') dt.tag("immath") if True: # use the mean of all channels... faster may be to use the middle plane # barf; edge channels can be with fewer subfields in a mosaic taskinit.ia.open('_pb') taskinit.ia.summary() ia1=taskinit.ia.moments(moments=[-1],drop=True,outfile=fno2) ia1.done() taskinit.ia.close() dt.tag("moments") utils.remove('_pbcor') utils.remove('_pb') dt.tag("impbcor-3") elif do_pb and not use_pb: # cheat case: PB was given, but not meant to be used # not implemented yet print "cheat case dummy PB not implemented yet" else: # no PB given if True: # re-running this was more consistently faster in wall clock time # note that zeroblanks=True will still keep the mask logging.debug("casa::ia.fromfits(%s) -> %s" % (fni,bdpfile)) taskinit.ia.fromfits(fno,fni,overwrite=True) #taskinit.ia.fromfits(fno,fni,overwrite=True,zeroblanks=True) dt.tag("fromfits") else: # not working to extend 3D yet, but this would solve the impv() 3D problem logging.debug("casa::importfits(%s) -> %s" % (fni,bdpfile)) #casa.importfits(fni,fno,defaultaxes=True,defaultaxesvalues=[None,None,None,'I']) # possible bug: zeroblanks=True has no effect? casa.importfits(fni,fno,zeroblanks=True) dt.tag("importfits") taskinit.ia.open(fno) if len(smooth) > 0: # smooth here, but Smooth_AT is another option # here we only allow pixel smoothing # spatial: gauss # spectral: boxcar/hanning (check for flux conservation) # is the boxcar wrong, not centered, but edged? # @todo CASA BUG: this will loose the object name (and maybe more?) from header, so VLSR lookup fails fnos = fno + '.smooth' taskinit.ia.convolve2d(outfile=fnos, overwrite=True, pa='0deg', major='%gpix' % smooth[0], minor='%gpix' % smooth[1], type='gaussian') taskinit.ia.close() srcname = casa.imhead(fno,mode="get",hdkey="object") # work around CASA bug #@todo use safer ia.rename() here. # https://casa.nrao.edu/docs/CasaRef/image.rename.html utils.rename(fnos,fno) casa.imhead(fno,mode="put",hdkey="object",hdvalue=srcname) # work around CASA bug dt.tag("convolve2d") if len(smooth) > 2 and smooth[2] > 0: if smooth[2] == 1: # @todo only 1 channel option specsmooth(fno,fnos,axis=2,function='hanning',dmethod="") else: # @todo may have the wrong center specsmooth(fno,fnos,axis=2,function='boxcar',dmethod="",width=smooth[2]) #@todo use safer ia.rename() here. # https://casa.nrao.edu/docs/CasaRef/image.rename.html utils.rename(fnos,fno) dt.tag("specsmooth") taskinit.ia.open(fno) s = taskinit.ia.summary() if len(s['shape']) != 4: logging.warning("Adding dummy STOKES-I axis") fnot = fno + '_4' taskinit.ia.adddegaxes(stokes='I',outfile=fnot) taskinit.ia.close() #@todo use safer ia.rename() here. # https://casa.nrao.edu/docs/CasaRef/image.rename.html utils.rename(fnot,fno) taskinit.ia.open(fno) dt.tag("adddegaxes") else: logging.info("SHAPE: %s" % str(s['shape'])) s = taskinit.ia.summary() dt.tag("summary-0") if s['hasmask'] and create_mask: logging.warning("no extra mask created because input image already had one") create_mask = False # if a box= or edge= was given, only a subset of the cube needs to be ingested # this however complicates PB correction later on if len(box) > 0 or len(edge) > 0: if readonly: raise Exception,"Cannot use box= or edge=, data is read-only, or use an basename/alias" if len(edge) == 1: edge.append(edge[0]) nx = s['shape'][0] ny = s['shape'][1] nz = s['shape'][2] logging.info("box=%s edge=%s processing with SHAPE: %s" % (str(box),str(edge),str(s['shape']))) if len(box) == 2: # select zrange if len(edge)>0: raise Exception,"Cannot use edge= when box=[z1,z2] is used" r1 = taskinit.rg.box([0,0,box[0]] , [nx-1,ny-1,box[1]]) elif len(box) == 4: if len(edge) == 0: # select just an XY box r1 = taskinit.rg.box([box[0],box[1]] , [box[2],box[3]]) elif len(edge) == 2: # select an XY box, but remove some edge channels r1 = taskinit.rg.box([box[0],box[1],edge[0]] , [box[2],box[3],nz-edge[1]-1]) else: raise Exception,"Bad edge= for len(box)=4" elif len(box) == 6: # select an XYZ box r1 = taskinit.rg.box([box[0],box[1],box[2]] , [box[3],box[4],box[5]]) elif len(edge) == 2: # remove some edge channels, but keep the whole XY box r1 = taskinit.rg.box([0,0,edge[0]] , [nx-1,ny-1,nz-edge[1]-1]) else: raise Exception,"box=%s illegal" % box logging.debug("BOX/EDGE selection: %s %s" % (str(r1['blc']),str(r1['trc']))) #if taskinit.ia.isopen(): taskinit.ia.close() logging.info("SUBIMAGE") subimage = taskinit.ia.subimage(region=r1,outfile=fno+'.box',overwrite=True) taskinit.ia.close() taskinit.ia.done() subimage.rename(fno,overwrite=True) subimage.close() subimage.done() taskinit.ia.open(fno) dt.tag("subimage-1") else: # the whole cube is passed onto ADMIT if readonly and create_mask: raise Exception,"Cannot use mask=True, data read-only, or use an alias" if file_is_casa and not readonly: # @todo a miriad file - which should be read only - will also create a useless copy here if no alias used taskinit.ia.subimage(overwrite=True,outfile=fno) taskinit.ia.close() taskinit.ia.open(fno) dt.tag("subimage-0") if create_mask: if readonly: raise Exception,"Cannot create mask, data read-only, or use an alias" # also check out the 'fromfits::zeroblanks = False' # calcmask() will overwrite any previous pixelmask #taskinit.ia.calcmask('mask("%s") && "%s" != 0.0' % (fno,fno)) taskinit.ia.calcmask('"%s" != 0.0' % fno) dt.tag("mask") s = taskinit.ia.summary() dt.tag("summary-1") # do a fast statistics (no median or robust) s0 = taskinit.ia.statistics() dt.tag("statistics") if len(s0['npts']) == 0: raise Exception,"No statistics possible, are there valid data in this cube?" # There may be multiple beams per plane so we can't # rely on the BEAM's 'major', 'minor', 'positionangle' being present. # ia.commonbeam() is guaranteed to return beam parameters # if present if do_cbeam and s.has_key('perplanebeams'): # report on the beam extremities, need to loop over all, # first and last don't need to be extremes.... n = s['perplanebeams']['nChannels'] ab0 = '*0' bb0 = s['perplanebeams']['beams'][ab0]['*0'] bmaj0 = bb0['major']['value'] bmin0 = bb0['minor']['value'] beamd = 0.0 for i in range(n): ab1 = '*%d' % i bb1 = s['perplanebeams']['beams'][ab1]['*0'] bmaj1 = bb1['major']['value'] bmin1 = bb1['minor']['value'] beamd = max(beamd,abs(bmaj0-bmaj1),abs(bmin0-bmin1)) logging.warning("MAX-BEAMSPREAD %f" % (beamd)) # if True: logging.info("Applying a commonbeam from the median beam accross the band") # imhead is a bit slow; alternatively use ia.summary() at the half point for setrestoringbeam() h = casa.imhead(fno,mode='list') b = h['perplanebeams']['median area beam'] taskinit.ia.setrestoringbeam(remove=True) taskinit.ia.setrestoringbeam(beam=b) commonbeam = taskinit.ia.commonbeam() else: # @todo : this will be VERY slow - code not finished, needs renaming etc. # this is however formally the better solution logging.warning("commmonbeam code not finished") cb = taskinit.ia.commonbeam() taskinit.ia.convolve2d(outfile='junk-common.im', major=cb['major'], minor=cb['minor'], pa=cb['pa'], targetres=True, overwrite=True) dt.tag('convolve2d') commonbeam = {} else: try: commonbeam = taskinit.ia.commonbeam() except: nppb = 4.0 logging.warning("No synthesized beam found, faking one to prevent downstream problems: nppb=%f" % nppb) s = taskinit.ia.summary() cdelt2 = abs(s['incr'][0]) * 180.0/math.pi*3600.0 bmaj = nppb * cdelt2 # use a nominal 4 points per (round) beam bmin = nppb * cdelt2 bpa = 0.0 taskinit.ia.setrestoringbeam(major='%farcsec' % bmaj, minor='%farcsec' % bmin, pa='%fdeg' % bpa) commonbeam = {} logging.info("COMMONBEAM[%d] %s" % (len(commonbeam),str(commonbeam))) first_point = taskinit.ia.getchunk(blc=[0,0,0,0],trc=[0,0,0,0],dropdeg=True) logging.debug("DATA0*: %s" % str(first_point)) taskinit.ia.close() logging.info('BASICS: [shape] npts min max: %s %d %f %f' % (s['shape'],s0['npts'][0],s0['min'][0],s0['max'][0])) logging.info('S/N (all data): %f' % (s0['max'][0]/s0['rms'][0])) npix = 1 nx = s['shape'][0] ny = s['shape'][1] nz = s['shape'][2] for n in s['shape']: npix = npix * n ngood = int(s0['npts'][0]) fgood = (1.0*ngood)/npix logging.info('GOOD PIXELS: %d/%d (%f%% good or %f%% bad)' % (ngood,npix,100.0*fgood,100.0*(1 - fgood))) if s['hasmask']: logging.warning('MASKS: %s' % (str(s['masks']))) if not file_is_casa: b1.setkey("image", Image(images={bt.CASA:bdpfile})) if do_pb: b2.setkey("image", Image(images={bt.CASA:bdpfile2})) # cube sanity: needs to be either 4D or 2D. But p-p-v cube # alternative: ia.subimage(dropdeg = True) # see also: https://bugs.nrao.edu/browse/CAS-5406 shape = s['shape'] if len(shape)>3: if shape[3]>1: # @todo this happens when you ingest a fits or casa image which is ra-dec-pol-freq if nz > 1: msg = 'Ingest_AT: cannot deal with real 4D cubes yet' logging.critical(msg) raise Exception,msg else: # @todo this is not working yet when the input was a casa image, but ok when fits. go figure. fnot = fno + ".trans" if True: # this works #@todo use safer ia.rename() here. # https://casa.nrao.edu/docs/CasaRef/image.rename.html utils.rename(fno,fnot) imtrans(fnot,fno,"0132") utils.remove(fnot) else: # this does not work, what the heck imtrans(fno,fnot,"0132") #@todo use safer ia.rename() here. # https://casa.nrao.edu/docs/CasaRef/image.rename.html utils.rename(fnot,fno) nz = s['shape'][3] # get a new summary 's' taskinit.ia.open(fno) s = taskinit.ia.summary() taskinit.ia.close() logging.warning("Using imtrans, with nz=%d, to fix axis ordering" % nz) dt.tag("imtrans4") # @todo ensure first two axes are position, followed by frequency elif len(shape)==3: # the current importfits() can do defaultaxes=True,defaultaxesvalues=['', '', '', 'I'] # but then appears to return a ra-dec-pol-freq cube # this branch probably never happens, since ia.fromfits() will # properly convert a 3D cube to 4D now !! # NO: when NAXIS=3 but various AXIS4's are present, that works. But not if it's pure 3D # @todo box= logging.warning("patching up a 3D to 4D cube") raise Exception,"SHOULD NEVER GET HERE" fnot = fno + ".trans" casa.importfits(fni,fnot,defaultaxes=True,defaultaxesvalues=['', '', '', 'I']) utils.remove(fno) # ieck imtrans(fnot,fno,"0132") utils.remove(fnot) dt.tag("imtrans3") logging.regression('CUBE: %g %g %g %d %d %d %f' % (s0['min'],s0['max'],s0['rms'],nx,ny,nz,100.0*(1 - fgood))) # if the cube has only 1 plane (e.g. continuum) , create a visual (png or so) # for 3D cubes, rely on something like CubeSum if nz == 1: implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) implot.plotter(rasterfile=bdpfile,figname=bdpfile) # @todo needs to be registered for the BDP, right now we only have the plot # ia.summary() doesn't have this easily available, so run the more expensive imhead() h = casa.imhead(fno,mode='list') telescope = h['telescope'] # work around CASA's PIPELINE bug/feature? if 'OBJECT' is blank, try 'FIELD' srcname = h['object'] if srcname == ' ': logging.warning('FIELD used for OBJECT') srcname = casa.imhead(fno,mode='get',hdkey='field') if srcname == False: # if no FIELD either, we're doomed. yes, this did happen. srcname = 'Unknown' casa.imhead(fno,mode="put",hdkey="object",hdvalue=srcname) h['object'] = srcname logging.info('TELESCOPE: %s' % telescope) logging.info('OBJECT: %s' % srcname) logging.info('REFFREQTYPE: %s' % h['reffreqtype']) if h['reffreqtype'].find('TOPO')>=0: msg = 'Ingest_AT: cannot deal with cubes with TOPOCENTRIC frequencies yet - winging it' logging.warning(msg) #raise Exception,msg # Ensure beam parameters are available if there are multiple beams # If there is just one beam, then we are just overwriting the header # variables with their identical values. if len(commonbeam) != 0: h['beammajor'] = commonbeam['major'] h['beamminor'] = commonbeam['minor'] h['beampa'] = commonbeam['pa'] # cheat add some things that need to be passed to summary.... h['badpixel'] = 1.0-fgood if vlsr < -999998.0: vlsr = admit.VLSR().vlsr(h['object'].upper()) h['vlsr'] = vlsr logging.info("VLSR = %f (from source catalog)" % vlsr) taskargs = "file=" + fitsfile if create_mask == True: taskargs = taskargs + " mask=True" if len(box) > 0: taskargs = taskargs + " " + str(box) if len(edge) > 0: taskargs = taskargs + " " + str(edge) r2d = 57.29577951308232 logging.info("RA Axis 1: %f %f %f" % (h['crval1']*r2d,h['cdelt1']*r2d*3600.0,h['crpix1'])) logging.info("DEC Axis 2: %f %f %f" % (h['crval2']*r2d,h['cdelt2']*r2d*3600.0,h['crpix2'])) if nz > 1: # @todo check if this is really a freq axis (for ALMA it is, but...) t3 = h['ctype3'] df = h['cdelt3'] fc = h['crval3'] + (0.5*(float(shape[2])-1)-h['crpix3'])*df # center freq; 0 based pixels if h.has_key('restfreq'): fr = float(h['restfreq'][0]) else: fr = fc fw = df*float(shape[2]) dv = -df/fr*utils.c logging.info("Freq Axis 3: %g %g %g" % (h['crval3']/1e9,h['cdelt3']/1e9,h['crpix3'])) logging.info("Cube Axis 3: type=%s velocity increment=%f km/s @ fc=%f fw=%f GHz" % (t3,dv,fc/1e9,fw/1e9)) # @todo sort out this restfreq/vlsr # report 'reffreqtype', 'restfreq' 'telescope' # if the fits file has ALTRVAL/ALTRPIX, this is lost in CASA? # but if you do fits->casa->fits , it's back in fits (with some obvious single precision loss of digits) # @todo ZSOURCE is the proposed VLSR slot in the fits header, but this has frame issues (it's also optical) # # Another method to get the vlsr is to override the restfreq (f0) with an AT keyword # and the 'restfreq' from the header (f) is then used to compute the vlsr: v = c (1 - f/f0) # if shape[2] > 1 and h.has_key('restfreq'): logging.info("RESTFREQ: %g %g %g" % (fr/1e9,h['restfreq'][0]/1e9,restfreq)) if shape[2] > 1: # v_radio of the center of the window w.r.t. restfreq c = utils.c # 299792.458 km/s vlsrc = c*(1-fc/fr) # @todo rel frame? vlsrw = dv*float(shape[2]) if restfreq > 0: vlsrf = c*(1-fr/restfreq/1e9) h['vlsr'] = vlsrf else: vlsrf = 0.0 logging.info("VLSRc = %f VLSRw = %f VLSRf = %f VLSR = %f" % (vlsrc, vlsrw, vlsrf, vlsr)) if h['vlsr'] == 0.0: # @todo! This fails if vlsr actually is zero. Need another magic number h['vlsr'] = vlsrc logging.warning("Warning: No VLSR found, substituting VLSRc = %f" % vlsrc) else: msg = 'Ingest_AT: missing RESTFREQ' print msg # @todo LINTRN is the ALMA keyword that designates the expected line transition in a spw self._summarize(fitsfile, bdpfile, h, shape, taskargs) dt.tag("done") dt.end()
def blankcube(image, dummyMS, smooth=True, verbose=True, region='centerbox[[10h21m45s,18.05.14.9],[15arcmin,15arcmin]]', ruthless=False, extension='.image', beamround='int', blankThreshold=2.5, moments=[0]): ''' Parameters ---------- image : string Base name of image. If target image has extension other than '.image', change the extension keyword. dummyMS : string MS file required for blanking process in CASA smooth : bool, optional Smooth the image to a circular beam before blanking? Default True verbose : bool, optional region : string, optional region parameter featured in CASA ruthless : bool, optional Delete previous outputs from blankcube extension : string, optional Extension of the target image. Must include the '.', e.g., '.restored' Default '.image' beamround : string,float P blankThreshold : float, optional Initial blanking threshold of all pixels scaled by the standard deviation times the blankingthreshold Default = 2.5 (Walter et al. 2008) moments : list, optional Moments to calculate from cube. Options are 0,1,2. Example: [0,1,2] Default: [0] Returns ------- out : null Examples -------- ''' from casa import immath, imsmooth, immoments from casa import image as ia from casa import imager as im from casa import quanta as qa import os import numpy as np # Delete files associated with previous runs if ruthless: os.system('rm -rf ' + image + '.smooth.blk.image') os.system('rm -rf ' + image + '.smooth.image') os.system('rm -rf ' + image + '.blk.image') os.system('rm -rf ' + image + '.mask') imageDir = './' # Create moment maps mom0, mom1, mom2 = False, False, False if len(moments) > 0: for i, moment in enumerate(moments): if moment == 0: mom0 = True if moment == 1: mom1 = True if moment == 2: mom2 = True if mom1 == True or mom2 == True: beamScale = 1.01 elif mom0 == True: beamScale = 2. # determine beamsize of cube ia.open(imageDir + image + extension) beamsizes = np.zeros(ia.shape()[2]) for i in range(ia.shape()[2]): beamsizes[i] = ia.restoringbeam(channel=i)['major']['value'] beamsizeUnit = ia.restoringbeam(channel=i)['major']['unit'] beamsize = qa.convert(str(beamsizes.max()) + beamsizeUnit, 'arcsec')['value'] if type(beamround) == float: beamsize_smooth = beamround * beamsize else: beamsize_smooth = np.ceil(beamsize) #beamsize_smooth = 1.01 * beamsize ia.close() if verbose: print 'Max beamsize is ' + str(beamsize) + '"' if not os.path.exists(image + '.blk.image'): # create cube for blanking if smooth: # smooth to a larger beam if the user desires if verbose: print 'Convolving to ' + str(beamsize_smooth) + '"' imsmooth(imagename=image + extension, outfile=image + '.blk.image', major=str(beamsize_smooth) + 'arcsec', minor=str(beamsize_smooth) + 'arcsec', region=region, pa='0deg', targetres=True) else: # do no smooth immath(imagename=image + extension, outfile=image + '.blk.image', mode='evalexpr', region=region, expr='IM0') if not os.path.exists(image + '.smooth.image'): # convolve cube to 2X beam for blanking imsmooth(imagename=image + extension, outfile=image + '.smooth.image', major=str(beamsize * beamScale) + 'arcsec', minor=str(beamsize * beamScale) + 'arcsec', pa='0deg', region=region, targetres=True) # determine threshold of cube ia.open(image + '.smooth.image') threshold = ia.statistics()['sigma'][0] * blankThreshold ia.close() # blank the cube at threshold*sigma ia.open(image + '.smooth.image') ia.calcmask(mask=image + '.smooth.image > ' + str(threshold), name='mask1') wait = 'waits for calcmask to close' ia.close() # hand blank the cube im.open(dummyMS) pause = None while pause is None: im.drawmask(image=image + '.smooth.image', mask=image + '.mask') pause = 0 im.close # mask contains values of 0 and 1, change to a mask with only values of 1 ia.open(image + '.mask') ia.calcmask(image + '.mask' + '>0.5') ia.close() # apply mask on smoothed image immath(imagename=image + '.smooth.image', outfile=image + '.smooth.blk.image', mode='evalexpr', mask='mask(' + image + '.mask)', expr='IM0') # apply mask on image ia.open(imageDir + image + '.blk.image') ia.maskhandler('copy', [image + '.smooth.blk.image:mask0', 'newmask']) ia.maskhandler('set', 'newmask') ia.done() cube = '.blk.image' # specify name of cube for moment calculation # create moment 0 map if mom0: if ruthless: os.system('rm -rf ' + image + '.mom0.image') immoments(imagename=image + cube, moments=[0], axis='spectra', chans='', mask='mask(' + image + cube + ')', outfile=image + '.mom0.image') # create moment 1 map if mom1: if ruthless: os.system('rm -rf ' + image + '.mom1.image') immoments(imagename=image + cube, moments=[1], axis='spectra', chans='', mask='mask(' + image + cube + ')', outfile=image + '.mom1.image') # create moment 2 map if mom2: if ruthless: os.system('rm -rf ' + image + '.mom2.image') immoments(imagename=image + cube, moments=[2], axis='spectra', chans='', mask='mask(' + image + cube + ')', outfile=image + '.mom2.image') if verbose and mom0: from casa import imstat flux = imstat(image + '.mom0.image')['flux'][0] ia.open(image + '.mom0.image') beammaj = ia.restoringbeam(channel=0)['major']['value'] beammin = ia.restoringbeam(channel=0)['minor']['value'] beamsizeUnit = ia.restoringbeam(channel=0)['major']['unit'] ia.close() print 'Moment Image: ' + str(image) + '.mom0.image' print 'Beamsize: ' + str(beammaj) + '" X ' + str(beammin) + '"' print 'Flux: ' + str(flux) + ' Jy km/s'
def blankcube(image, dummyMS, smooth=True, verbose=True, region='centerbox[[10h21m45s,18.05.14.9],[15arcmin,15arcmin]]', ruthless=False, extension='.image', beamround='int', blankThreshold=2.5, moments=[0]): ''' Parameters ---------- image : string Base name of image. If target image has extension other than '.image', change the extension keyword. dummyMS : string MS file required for blanking process in CASA smooth : bool, optional Smooth the image to a circular beam before blanking? Default True verbose : bool, optional region : string, optional region parameter featured in CASA ruthless : bool, optional Delete previous outputs from blankcube extension : string, optional Extension of the target image. Must include the '.', e.g., '.restored' Default '.image' beamround : string,float P blankThreshold : float, optional Initial blanking threshold of all pixels scaled by the standard deviation times the blankingthreshold Default = 2.5 (Walter et al. 2008) moments : list, optional Moments to calculate from cube. Options are 0,1,2. Example: [0,1,2] Default: [0] Returns ------- out : null Examples -------- ''' from casa import immath,imsmooth,immoments from casa import image as ia from casa import imager as im from casa import quanta as qa import os import numpy as np # Delete files associated with previous runs if ruthless: os.system('rm -rf ' + image + '.smooth.blk.image') os.system('rm -rf ' + image + '.smooth.image') os.system('rm -rf ' + image + '.blk.image') os.system('rm -rf ' + image + '.mask') imageDir = './' # Create moment maps mom0,mom1,mom2 = False,False,False if len(moments) > 0: for i, moment in enumerate(moments): if moment == 0: mom0 = True if moment == 1: mom1 = True if moment == 2: mom2 = True if mom1 == True or mom2 == True: beamScale = 1.01 elif mom0 == True: beamScale = 2. # determine beamsize of cube ia.open(imageDir + image + extension) beamsizes = np.zeros(ia.shape()[2]) for i in range(ia.shape()[2]): beamsizes[i] = ia.restoringbeam(channel=i)['major']['value'] beamsizeUnit = ia.restoringbeam(channel=i)['major']['unit'] beamsize = qa.convert(str(beamsizes.max()) + beamsizeUnit,'arcsec')['value'] if type(beamround) == float: beamsize_smooth = beamround*beamsize else: beamsize_smooth = np.ceil(beamsize) #beamsize_smooth = 1.01 * beamsize ia.close() if verbose: print 'Max beamsize is ' + str(beamsize) + '"' if not os.path.exists(image + '.blk.image'): # create cube for blanking if smooth: # smooth to a larger beam if the user desires if verbose: print 'Convolving to ' + str(beamsize_smooth) + '"' imsmooth(imagename=image + extension, outfile=image + '.blk.image', major=str(beamsize_smooth) + 'arcsec', minor=str(beamsize_smooth) + 'arcsec', region=region, pa='0deg', targetres=True) else: # do no smooth immath(imagename=image + extension, outfile=image + '.blk.image', mode='evalexpr', region=region, expr='IM0') if not os.path.exists(image + '.smooth.image'): # convolve cube to 2X beam for blanking imsmooth(imagename=image + extension, outfile=image + '.smooth.image', major=str(beamsize*beamScale) + 'arcsec', minor=str(beamsize*beamScale) + 'arcsec', pa='0deg', region=region, targetres=True) # determine threshold of cube ia.open(image + '.smooth.image') threshold = ia.statistics()['sigma'][0] * blankThreshold ia.close() # blank the cube at threshold*sigma ia.open(image + '.smooth.image') ia.calcmask(mask=image + '.smooth.image > ' + str(threshold), name='mask1') wait = 'waits for calcmask to close' ia.close() # hand blank the cube im.open(dummyMS) pause = None while pause is None: im.drawmask(image=image + '.smooth.image', mask=image + '.mask') pause = 0 im.close # mask contains values of 0 and 1, change to a mask with only values of 1 ia.open(image + '.mask') ia.calcmask(image + '.mask' + '>0.5') ia.close() # apply mask on smoothed image immath(imagename=image + '.smooth.image', outfile=image + '.smooth.blk.image', mode='evalexpr', mask='mask(' + image + '.mask)', expr='IM0') # apply mask on image ia.open(imageDir + image + '.blk.image') ia.maskhandler('copy',[image + '.smooth.blk.image:mask0', 'newmask']) ia.maskhandler('set','newmask') ia.done() cube = '.blk.image' # specify name of cube for moment calculation # create moment 0 map if mom0: if ruthless: os.system('rm -rf ' + image + '.mom0.image') immoments(imagename=image + cube, moments=[0], axis='spectra', chans='', mask='mask(' + image + cube + ')', outfile=image + '.mom0.image') # create moment 1 map if mom1: if ruthless: os.system('rm -rf ' + image + '.mom1.image') immoments(imagename=image + cube, moments=[1], axis='spectra', chans='', mask='mask(' + image + cube + ')', outfile=image + '.mom1.image') # create moment 2 map if mom2: if ruthless: os.system('rm -rf ' + image + '.mom2.image') immoments(imagename=image + cube, moments=[2], axis='spectra', chans='', mask='mask(' + image + cube + ')', outfile=image + '.mom2.image') if verbose and mom0: from casa import imstat flux = imstat(image + '.mom0.image')['flux'][0] ia.open(image + '.mom0.image') beammaj = ia.restoringbeam(channel=0)['major']['value'] beammin = ia.restoringbeam(channel=0)['minor']['value'] beamsizeUnit = ia.restoringbeam(channel=0)['major']['unit'] ia.close() print 'Moment Image: ' + str(image) + '.mom0.image' print 'Beamsize: ' + str(beammaj) + '" X ' + str(beammin) + '"' print 'Flux: ' + str(flux) + ' Jy km/s'
def run(self): """ The run method creates the BDP Parameters ---------- None Returns ------- None """ dt = utils.Dtime("CubeSum") # tagging time self._summary = {} # an ADMIT summary will be created here numsigma = self.getkey("numsigma") # get the input keys sigma = self.getkey("sigma") use_lines = self.getkey("linesum") pad = self.getkey("pad") b1 = self._bdp_in[0] # spw image cube b1a = self._bdp_in[1] # cubestats (optional) b1b = self._bdp_in[2] # linelist (optional) f1 = b1.getimagefile(bt.CASA) taskinit.ia.open(self.dir(f1)) s = taskinit.ia.summary() nchan = s['shape'][2] if b1b != None: ch0 = b1b.table.getFullColumnByName("startchan") ch1 = b1b.table.getFullColumnByName("endchan") s = Segments(ch0, ch1, nchan=nchan) # @todo something isn't merging here as i would have expected, # e.g. test0.fits [(16, 32), (16, 30), (16, 29)] if pad > 0: for (c0, c1) in s.getsegmentsastuples(): s.append([c0 - pad, c0]) s.append([c1, c1 + pad]) s.merge() s.recalcmask() # print "PJT segments:",s.getsegmentsastuples() ns = len(s.getsegmentsastuples()) chans = s.chans(not use_lines) if use_lines: msum = s.getmask() else: msum = 1 - s.getmask() logging.info("Read %d segments" % ns) # print "chans",chans # print "msum",msum # from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping # examples are: ['boxcar',3] ['gaussian',7] ['hanning',5] smooth = [] sig_const = False # figure out if sigma is taken as constant in the cube if b1a == None: # if no 2nd BDP was given, sigma needs to be specified if sigma <= 0.0: raise Exception, "Neither user-supplied sigma nor CubeStats_BDP input given. One is required." else: sig_const = True # and is constant else: if sigma > 0: sigma = b1a.get("sigma") sig_const = True if sig_const: logging.info("Using constant sigma = %f" % sigma) else: logging.info("Using varying sigma per plane") infile = b1.getimagefile(bt.CASA) # ADMIT filename of the image (cube) bdp_name = self.mkext( infile, 'csm' ) # morph to the new output name with replaced extension 'csm' image_out = self.dir(bdp_name) # absolute filename args = { "imagename": self.dir(infile) } # assemble arguments for immoments() args["moments"] = 0 # only need moments=0 (or [0] is ok as well) args["outfile"] = image_out # note full pathname dt.tag("start") if sig_const: args["excludepix"] = [-numsigma * sigma, numsigma * sigma] # single global sigma if b1b != None: # print "PJT: ",chans args["chans"] = chans else: # @todo in this section bad channels can cause a fully masked cubesum = bad # cubestats input sigma_array = b1a.table.getColumnByName( "sigma") # channel dependent sigma sigma_pos = sigma_array[np.where(sigma_array > 0)] smin = sigma_pos.min() smax = sigma_pos.max() logging.info("sigma varies from %f to %f" % (smin, smax)) maxval = b1a.get("maxval") # max in cube nzeros = len(np.where(sigma_array <= 0.0)[0]) # check bad channels if nzeros > 0: logging.warning("There are %d NaN channels " % nzeros) # raise Exception,"need to recode CubeSum or use constant sigma" dt.tag("grab_sig") if len(smooth) > 0: # see also LineID and others filter = Filter1D.Filter1D( sigma_array, smooth[0], **Filter1D.Filter1D.convertargs(smooth)) sigma_array = filter.run() dt.tag("smooth_sig") # create a CASA image copy for making the mirror sigma cube to mask against file = self.dir(infile) mask = file + "_mask" taskinit.ia.fromimage(infile=file, outfile=mask) nx = taskinit.ia.shape()[0] ny = taskinit.ia.shape()[1] nchan = taskinit.ia.shape()[2] taskinit.ia.fromshape(shape=[nx, ny, 1]) plane = taskinit.ia.getchunk( [0, 0, 0], [-1, -1, 0]) # convenience plane for masking operation dt.tag("mask_sig") taskinit.ia.open(mask) dt.tag("open_mask") count = 0 for i in range(nchan): if sigma_array[i] > 0: if b1b != None: if msum[i]: taskinit.ia.putchunk(plane * 0 + sigma_array[i], blc=[0, 0, i, -1]) count = count + 1 else: taskinit.ia.putchunk(plane * 0 + maxval, blc=[0, 0, i, -1]) else: taskinit.ia.putchunk(plane * 0 + sigma_array[i], blc=[0, 0, i, -1]) count = count + 1 else: taskinit.ia.putchunk(plane * 0 + maxval, blc=[0, 0, i, -1]) taskinit.ia.close() logging.info("%d/%d channels used for CubeSum" % (count, nchan)) dt.tag("close_mask") names = [file, mask] tmp = file + '.tmp' if numsigma == 0.0: # hopefully this will also make use of the mask exp = "IM0[IM1<%f]" % (0.99 * maxval) else: exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma) # print "PJT: exp",exp casa.immath(mode='evalexpr', imagename=names, expr=exp, outfile=tmp) args["imagename"] = tmp dt.tag("immath") casa.immoments(**args) dt.tag("immoments") if sig_const is False: # get rid of temporary files utils.remove(tmp) utils.remove(mask) # get the flux taskinit.ia.open(image_out) st = taskinit.ia.statistics() taskinit.ia.close() dt.tag("statistics") # report that flux, but there's no way to get the units from casa it seems # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA # imstat() does seem to know it. if st.has_key('flux'): rdata = [st['flux'][0], st['sum'][0]] logging.info("Total flux: %f (sum=%f)" % (st['flux'], st['sum'])) else: rdata = [st['sum'][0]] logging.info("Sum: %f (beam parameters missing)" % (st['sum'])) logging.regression("CSM: %s" % str(rdata)) # Create two output images for html and their thumbnails, too implot = ImPlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) implot.plotter(rasterfile=bdp_name, figname=bdp_name, colorwedge=True) figname = implot.getFigure(figno=implot.figno, relative=True) thumbname = implot.getThumbnail(figno=implot.figno, relative=True) dt.tag("implot") thumbtype = bt.PNG # really should be correlated with self._plot_type!! # 2. Create a histogram of the map data # get the data for a histogram data = casautil.getdata(image_out, zeromask=True).compressed() dt.tag("getdata") # get the label for the x axis bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative myplot = APlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) auxname = bdp_name + "_histo" auxtype = bt.PNG # really should be correlated with self._plot_type!! myplot.histogram(columns=data, figname=auxname, xlab=bunit, ylab="Count", title="Histogram of CubeSum: %s" % (bdp_name), thumbnail=True) auxname = myplot.getFigure(figno=myplot.figno, relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno, relative=True) images = {bt.CASA: bdp_name, bt.PNG: figname} casaimage = Image(images=images, auxiliary=auxname, auxtype=auxtype, thumbnail=thumbname, thumbnailtype=thumbtype) if hasattr(b1, "line"): # SpwCube doesn't have Line line = deepcopy(getattr(b1, "line")) if type(line) != type(Line): line = Line(name="Undetermined") else: line = Line(name="Undetermined") # fake a Line if there wasn't one self.addoutput( Moment_BDP(xmlFile=bdp_name, moment=0, image=deepcopy(casaimage), line=line)) imcaption = "Integral (moment 0) of all emission in image cube" auxcaption = "Histogram of cube sum for image cube" taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma, str(smooth)) self._summary["cubesum"] = SummaryEntry([ figname, thumbname, imcaption, auxname, auxthumb, auxcaption, bdp_name, infile ], "CubeSum_AT", self.id(True), taskargs) dt.tag("done") dt.end()
def run(self): """ The run method, calculates the moments and creates the BDP(s) Parameters ---------- None Returns ------- None """ self._summary = {} momentsummary = [] dt = utils.Dtime("Moment") # variable to track if we are using a single cutoff for all moment maps allsame = False moments = self.getkey("moments") numsigma = self.getkey("numsigma") mom0clip = self.getkey("mom0clip") # determine if there is only 1 cutoff or if there is a cutoff for each moment if len(moments) != len(numsigma): if len(numsigma) != 1: raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.") allsame = True # default moment file extensions, this is information copied from casa.immoments() momentFileExtensions = {-1: ".average", 0: ".integrated", 1: ".weighted_coord", 2: ".weighted_dispersion_coord", 3: ".median", 4: "", 5: ".standard_deviation", 6: ".rms", 7: ".abs_mean_dev", 8: ".maximum", 9: ".maximum_coord", 10: ".minimum", 11: ".minimum_coord", } logging.debug("MOMENT: %s %s %s" % (str(moments), str(numsigma), str(allsame))) # get the input casa image from bdp[0] # also get the channels the line actually covers (if any) bdpin = self._bdp_in[0] infile = bdpin.getimagefile(bt.CASA) chans = self.getkey("chans") # the basename of the moments, we will append _0, _1, etc. basename = self.mkext(infile, "mom") fluxname = self.mkext(infile, "flux") # beamarea = nppb(self.dir(infile)) beamarea = 1.0 # until we have it from the MOM0 map sigma0 = self.getkey("sigma") sigma = sigma0 dt.tag("open") # if no CubseStats BDP was given and no sigma was specified, find a # noise level via casa.imstat() if self._bdp_in[1] is None and sigma <= 0.0: raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff") elif self._bdp_in[1] is not None: sigma = self._bdp_in[1].get("sigma") # immoments is a bit peculiar. If you give one moment, it will use # exactly the outfile you picked for multiple moments, it will pick # extensions such as .integrated [0], .weighted_coord [1] etc. # we loop over the moments and will use the numeric extension instead. # Might be laborious loop for big input cubes # # arguments for immoments args = {"imagename" : self.dir(infile), "moments" : moments, "outfile" : self.dir(basename)} # set the channels if given if chans != "": args["chans"] = chans # error check the mom0clip input if mom0clip > 0.0 and not 0 in moments: logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.") # add moment0 to the list of computed moments, but it has to be first moments.insert(0,0) if not allsame: numsigma.insert(0, 2.0*sigma) if allsame: # this is only executed now if len(moments) > 1 and len(cutoff)==1 args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma] casa.immoments(**args) dt.tag("immoments-all") else: # this is execute if len(moments)==len(cutoff) , even when len=1 for i in range(len(moments)): args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma] args["moments"] = moments[i] args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]]) casa.immoments(**args) dt.tag("immoments-%d" % moments[i]) taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) if sigma0 > 0: taskargs = taskargs + " sigma=%.2f" % sigma0 if mom0clip > 0: taskargs = taskargs + " mom0clip=%g" % mom0clip if chans == "": taskargs = taskargs + " chans=all" else: taskargs = taskargs + " chans=%s" % str(chans) taskargs += ' <span style="background-color:white"> ' + basename.split('/')[0] + ' </span>' # generate the mask to be applied to all but moment 0 if mom0clip > 0.0: # get the statistics from mom0 map # this is usually a very biased map, so unclear if mom0sigma is all that reliable args = {"imagename": self.dir(infile)} stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0])) mom0sigma = float(stat["sigma"][0]) # generate a temporary masked file, mask will be copied to other moments args = {"imagename" : self.dir(basename + momentFileExtensions[0]), "expr" : 'IM0[IM0>%f]' % (mom0clip * mom0sigma), "outfile" : self.dir("mom0.masked") } casa.immath(**args) # get the default mask name taskinit.ia.open(self.dir("mom0.masked")) defmask = taskinit.ia.maskhandler('default') taskinit.ia.close() dt.tag("mom0clip") # loop over moments to rename them to _0, _1, _2 etc. # apply a mask as well for proper histogram creation map = {} myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) for mom in moments: figname = imagename = "%s_%i" % (basename, mom) tempname = basename + momentFileExtensions[mom] # rename and remove the old one if there is one utils.rename(self.dir(tempname), self.dir(imagename)) # copy the moment0 mask if requested; this depends on that mom0 was done before if mom0clip > 0.0 and mom != 0: #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0]) #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0]) makemask(mode="copy", inpimage=self.dir("mom0.masked"), output="%s:%s" % (self.dir(imagename), defmask[0]), overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"), defmask[0])) taskinit.ia.open(self.dir(imagename)) taskinit.ia.maskhandler('set', defmask) taskinit.ia.close() dt.tag("makemask") if mom == 0: beamarea = nppb(self.dir(imagename)) implot.plotter(rasterfile=imagename,figname=figname,colorwedge=True) imagepng = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) images = {bt.CASA : imagename, bt.PNG : imagepng} thumbtype=bt.PNG dt.tag("implot") # get the data for a histogram (ia access is about 1000-2000 faster than imval()) map[mom] = casautil.getdata(self.dir(imagename)) data = map[mom].compressed() dt.tag("getdata") # make the histogram plot # get the label for the x axis bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit") # object for the caption objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative auxname = imagename + '_histo' auxtype = bt.PNG myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True) casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) if hasattr(self._bdp_in[0], "line"): # SpwCube doesn't have Line line = deepcopy(getattr(self._bdp_in[0], "line")) if not isinstance(line, Line): line = Line(name="Unidentified") else: # fake a Line if there wasn't one line = Line(name="Unidentified") # add the BDP to the output array self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom, image=deepcopy(casaimage), line=line)) dt.tag("ren+mask_%d" % mom) imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname) auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname) thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption, auxname, auxthumb, auxcaption, infile] momentsummary.append(thismomentsummary) if map.has_key(0) and map.has_key(1) and map.has_key(2): logging.debug("MAPs present: %s" % (map.keys())) # m0 needs a new mask, inherited from the more restricted m1 (and m2) m0 = ma.masked_where(map[1].mask,map[0]) m1 = map[1] m2 = map[2] m01 = m0*m1 m02 = m0*m1*m1 m22 = m0*m2*m2 sum0 = m0.sum() vmean = m01.sum()/sum0 # lacking the full 3D cube, get two estimates and take the max sig1 = math.sqrt(m02.sum()/sum0 - vmean*vmean) sig2 = m2.max() #vsig = max(sig1,sig2) vsig = sig1 # consider clipping in the masked array (mom0clip) # @todo i can't use info from line, so just borrow basename for now for grepping # this also isn't really the flux, the points per beam is still in there loc = basename.rfind('/') sum1 = ma.masked_less(map[0],0.0).sum() # mom0clip # print out: LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0] s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9 s_line = line.frequency if loc>0: if basename[:loc][0:2] == 'U_': # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band if abs(vmean) > vsig: vwarn = '*' else: vwarn = '' vlsr = vmean + (1.0-s_line/s_rest)*utils.c msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig) else: # for identified lines we'll assume the ID was correct and not bother with RESTFREQ msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig) else: msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL" ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig) logging.regression(msg) dt.tag("mom0flux") # create a histogram of flux per channel # grab the X coordinates for the histogram, we want them in km/s # restfreq should also be in summary restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9 # in GHz # print "PJT %.10f %.10f" % (restfreq,s_rest) imval0 = casa.imval(self.dir(infile)) freqs = imval0['coords'].transpose()[2]/1e9 x = (1-freqs/restfreq)*utils.c # h = casa.imstat(self.dir(infile), axes=[0,1]) if h.has_key('flux'): flux0 = h['flux'] else: flux0 = h['sum']/beamarea flux0sum = flux0.sum() * abs(x[1]-x[0]) # @todo make a flux1 with fluxes derived from a good mask flux1 = flux0 # construct histogram title = 'Flux Spectrum (%g)' % flux0sum xlab = 'VLSR (km/s)' ylab = 'Flux (Jy)' myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True) dt.tag("flux-spectrum") self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", self.id(True), taskargs) # get rid of the temporary mask if mom0clip > 0.0: utils.rmdir(self.dir("mom0.masked")) dt.tag("done") dt.end()