Example #1
0
def branch_or_leaf(dag: LocationDAG, location_id: int, sex: int, model_version_id: int,
                   parent_location: int, parent_sex: int,
                   n_sim: int, n_pool: int, upstream: List[str], tasks: List[_CascadeOperation]):
    """
    Recursive function that either creates a branch (by calling itself) or a leaf fit depending
    on whether or not it is at a terminal node. Determines if it's at a terminal node using
    the dag.successors() method from networkx. Appends tasks onto the tasks parameter.
    """
    if not dag.is_leaf(location_id=location_id):
        branch = branch_fit(
            model_version_id=model_version_id,
            location_id=location_id, sex_id=sex,
            prior_parent=parent_location, prior_sex=parent_sex,
            child_locations=dag.children(location_id), child_sexes=[sex],
            n_sim=n_sim, n_pool=n_pool,
            upstream_commands=upstream,
            ode_fit_strategy=True
        )
        tasks += branch
        for location in dag.children(location_id):
            branch_or_leaf(dag=dag, location_id=location, sex=sex, model_version_id=model_version_id,
                           parent_location=location_id, parent_sex=sex,
                           n_sim=n_sim, n_pool=n_pool, upstream=[branch[-1].command], tasks=tasks)
    else:
        leaf = leaf_fit(
            model_version_id=model_version_id,
            location_id=location_id,
            sex_id=sex,
            prior_parent=parent_location,
            prior_sex=parent_sex,
            n_sim=n_sim, n_pool=n_pool,
            upstream_commands=upstream,
            ode_fit_strategy=True
        )
        tasks += leaf
Example #2
0
class MeasurementInputs:

    def __init__(self, model_version_id: int,
                 gbd_round_id: int, decomp_step_id: int,
                 conn_def: str,
                 country_covariate_id: List[int],
                 csmr_cause_id: int, crosswalk_version_id: int,
                 csmr_process_version_id: Optional[int] = None,
                 location_set_version_id: Optional[int] = None,
                 drill_location_start: Optional[int] = None,
                 drill_location_end: Optional[List[int]] = None):
        """
        The class that constructs all of the measurement inputs. Pulls ASDR,
        CSMR, crosswalk versions, and country covariates, and puts them into
        one data frame that then formats itself for the dismod database.
        Performs covariate value interpolation if age and year ranges
        don't match up with GBD age and year ranges.

        Parameters
        ----------
        model_version_id
            the model version ID
        gbd_round_id
            the GBD round ID
        decomp_step_id
            the decomp step ID
        csmr_process_version_id
            process version ID for CSMR
        csmr_cause_id: (int) cause to pull CSMR from
        crosswalk_version_id
            crosswalk version to use
        country_covariate_id
            list of covariate IDs
        conn_def
            connection definition from .odbc file (e.g. 'epi') to connect to the IHME databases
        location_set_version_id
            can be None, if it's none, get the best location_set_version_id for estimation hierarchy of this GBD round
        drill_location_start
            which location ID to drill from as the parent
        drill_location_end
            which immediate children of the drill_location_start parent to include in the drill

        Attributes
        ----------
        self.decomp_step : str
            the decomp step in string form
        self.demographics : cascade_at.inputs.demographics.Demographics
            a demographics object that specifies the age group, sex,
            location, and year IDs to grab
        self.integrand_map : Dict[int, int]
            dictionary mapping from GBD measure IDs to DisMod IDs
        self.asdr : cascade_at.inputs.asdr.ASDR
            all-cause mortality input object
        self.csmr : cascade_at.inputs.csmr.CSMR
            cause-specific mortality input object from cause csmr_cause_id
        self.data : cascade_at.inputs.data.CrosswalkVersion
            crosswalk version data from IHME database
        self.covariate_data : List[cascade_at.inputs.covariate_data.CovariateData]
            list of covariate data objects that contains the raw covariate data mapped to IDs
        self.location_dag : cascade_at.inputs.locations.LocationDAG
            DAG of locations to be used
        self.population: (cascade_at.inputs.population.Population)
            population object that is used for covariate weighting
        self.data_eta: (Dict[str, float]): dictionary of eta value to be
            applied to each measure
        self.density: (Dict[str, str]): dictionary of density to be
            applied to each measure
        self.nu: (Dict[str, float]): dictionary of nu value to be applied
            to each measure
        self.dismod_data: (pd.DataFrame) resulting dismod data formatted
            to be used in the dismod database

        Examples
        --------
        >>> from cascade_at.settings.base_case import BASE_CASE
        >>> from cascade_at.settings.settings import load_settings
        >>>
        >>> settings = load_settings(BASE_CASE)
        >>> covariate_id = [i.country_covariate_id for i in settings.country_covariate]
        >>>
        >>> i = MeasurementInputs(
        >>>    model_version_id=settings.model.model_version_id,
        >>>    gbd_round_id=settings.gbd_round_id,
        >>>    decomp_step_id=settings.model.decomp_step_id,
        >>>    csmr_process_version_id=None,
        >>>    csmr_cause_id = settings.model.add_csmr_cause,
        >>>    crosswalk_version_id=settings.model.crosswalk_version_id,
        >>>    country_covariate_id=covariate_id,
        >>>    conn_def='epi',
        >>>    location_set_version_id=settings.location_set_version_id
        >>> )
        >>> i.get_raw_inputs()
        >>> i.configure_inputs_for_dismod(settings)
        """
        LOG.info(f"Initializing input object for model version ID {model_version_id}.")
        LOG.info(f"GBD Round ID {gbd_round_id}.")
        LOG.info(f"Pulling from connection {conn_def}.")

        self.model_version_id = model_version_id
        self.gbd_round_id = gbd_round_id
        self.decomp_step_id = decomp_step_id
        self.csmr_process_version_id = csmr_process_version_id
        self.csmr_cause_id = csmr_cause_id
        self.crosswalk_version_id = crosswalk_version_id
        self.country_covariate_id = country_covariate_id
        self.conn_def = conn_def
        self.drill_location_start = drill_location_start
        self.drill_location_end = drill_location_end
        self.decomp_step = ds.decomp_step_from_decomp_step_id(self.decomp_step_id)
        if location_set_version_id is None:
            self.location_set_version_id = get_location_set_version_id(gbd_round_id=self.gbd_round_id)
        else:
            self.location_set_version_id = location_set_version_id

        self.demographics = Demographics(
            gbd_round_id=self.gbd_round_id,
            location_set_version_id=self.location_set_version_id)
        self.location_dag = LocationDAG(
            location_set_version_id=self.location_set_version_id,
            gbd_round_id=self.gbd_round_id
        )
        # Need to subset the locations to only those needed for
        # the drill. drill_locations_all is the set of locations
        # to pull data for, including all descendents. drill_locations
        # is the set of locations just parent-children in the drill.
        drill_locations_all, drill_locations = locations_by_drill(
            drill_location_start=self.drill_location_start,
            drill_location_end=self.drill_location_end,
            dag=self.location_dag
        )
        if drill_locations_all:
            self.demographics.location_id = drill_locations_all
            self.demographics.drill_locations = drill_locations

        self.exclude_outliers = True
        self.asdr = None
        self.csmr = None
        self.population = None
        self.data = None
        self.covariates = None
        self.age_groups = None

        self.data_eta = None
        self.density = None
        self.nu = None
        self.measures_to_exclude = None

        self.dismod_data = None
        self.covariate_data = None
        self.country_covariate_data = None
        self.covariate_specs = None
        self.omega = None

    def get_raw_inputs(self):
        """
        Get the raw inputs that need to be used
        in the modeling.
        """
        LOG.info("Getting all raw inputs.")
        self.asdr = ASDR(
            demographics=self.demographics,
            decomp_step=self.decomp_step,
            gbd_round_id=self.gbd_round_id
        ).get_raw()
        self.csmr = CSMR(
            cause_id=self.csmr_cause_id,
            demographics=self.demographics,
            decomp_step=self.decomp_step,
            gbd_round_id=self.gbd_round_id,
            process_version_id=self.csmr_process_version_id
        ).get_raw()
        self.data = CrosswalkVersion(
            crosswalk_version_id=self.crosswalk_version_id,
            exclude_outliers=self.exclude_outliers,
            demographics=self.demographics,
            conn_def=self.conn_def,
            gbd_round_id=self.gbd_round_id
        ).get_raw()
        self.covariate_data = [CovariateData(
            covariate_id=c,
            demographics=self.demographics,
            decomp_step=self.decomp_step,
            gbd_round_id=self.gbd_round_id
        ).get_raw() for c in self.country_covariate_id]
        self.population = Population(
            demographics=self.demographics,
            decomp_step=self.decomp_step,
            gbd_round_id=self.gbd_round_id
        ).get_population()

    def configure_inputs_for_dismod(self, settings: SettingsConfig,
                                    midpoint: bool = False,
                                    mortality_year_reduction: int = 5):
        """
        Modifies the inputs for DisMod based on model-specific settings.

        Arguments
        ---------
        settings
            Settings for the model
        mortality_year_reduction
            number of years to decimate csmr and asdr
        """
        self.data_eta = data_eta_from_settings(settings)
        self.density = density_from_settings(settings)
        self.nu = nu_from_settings(settings)
        self.measures_to_exclude = measures_to_exclude_from_settings(settings)

        # If we are constraining omega, then we want to hold out the data
        # from the DisMod fit for ASDR (but never CSMR -- always want to fit
        # CSMR).
        data = self.data.configure_for_dismod(
            measures_to_exclude=self.measures_to_exclude,
            relabel_incidence=settings.model.relabel_incidence,
            midpoint=midpoint,
        )
        asdr = self.asdr.configure_for_dismod(
            hold_out=settings.model.constrain_omega)
        csmr = self.csmr.configure_for_dismod(hold_out=0)

        if settings.model.constrain_omega:
            self.omega = calculate_omega(asdr=asdr, csmr=csmr)
        else:
            self.omega = None

        if not csmr.empty:
            csmr = decimate_years(
                data=csmr, num_years=mortality_year_reduction)
        if not asdr.empty:
            asdr = decimate_years(
                data=asdr, num_years=mortality_year_reduction)

        self.dismod_data = pd.concat([data, asdr, csmr], axis=0, sort=True)
        self.dismod_data.reset_index(drop=True, inplace=True)

        self.dismod_data["density"] = self.dismod_data.measure.apply(
            self.density.__getitem__)
        self.dismod_data["eta"] = self.dismod_data.measure.apply(
            self.data_eta.__getitem__)
        self.dismod_data["nu"] = self.dismod_data.measure.apply(
            self.nu.__getitem__)

        # This makes the specs not just for the country covariate but adds on
        # the sex and one covariates.
        self.covariate_specs = CovariateSpecs(
            country_covariates=settings.country_covariate,
            study_covariates=settings.study_covariate
        )
        self.country_covariate_data = {c.covariate_id: c.configure_for_dismod(
            pop_df=self.population.configure_for_dismod(),
            loc_df=self.location_dag.df
        ) for c in self.covariate_data}

        self.dismod_data = self.add_covariates_to_data(df=self.dismod_data)
        self.dismod_data.loc[
            self.dismod_data.hold_out.isnull(), 'hold_out'] = 0.
        self.dismod_data.drop(['age_group_id'], inplace=True, axis=1)

        return self

    def prune_mortality_data(self, parent_location_id: int) -> pd.DataFrame:
        """
        Remove mortality data for descendents that are not children of parent_location_id
        from the configured dismod data before it gets filled into the dismod database.
        """
        df = self.dismod_data.copy()
        direct_children = self.location_dag.parent_children(parent_location_id)
        direct_children = df.location_id.isin(direct_children)
        mortality_measures = df.measure.isin([
            IntegrandEnum.mtall.name, IntegrandEnum.mtspecific.name
        ])
        remove_rows = ~direct_children & mortality_measures
        df = df.loc[~remove_rows].copy()
        return df

    def add_covariates_to_data(self, df: pd.DataFrame) -> pd.DataFrame:
        """
        Add on covariates to a data frame that has age_group_id, year_id
        or time-age upper / lower, and location_id and sex_id. Adds both
        country-level and study-level covariates.
        """
        cov_dict_for_interpolation = {
            c.name: self.country_covariate_data[c.covariate_id]
            for c in self.covariate_specs.covariate_specs
            if c.study_country == 'country'
        }

        df = self.interpolate_country_covariate_values(
            df=df, cov_dict=cov_dict_for_interpolation)
        df = self.transform_country_covariates(df=df)

        df['s_sex'] = df.sex_id.map(
            SEX_ID_TO_NAME).map(StudyCovConstants.SEX_COV_VALUE_MAP)
        df['s_one'] = StudyCovConstants.ONE_COV_VALUE

        return df

    def to_gbd_avgint(self, parent_location_id: int, sex_id: int) -> pd.DataFrame:
        """
        Converts the demographics of the model to the avgint table.
        """
        LOG.info(f"Getting grid for the avgint table "
                 f"for parent location ID {parent_location_id} "
                 f"and sex_id {sex_id}.")
        if self.drill_location_start is not None:
            locations = self.demographics.drill_locations
        else:
            locations = self.location_dag.parent_children(parent_location_id)
        grid = expand_grid({
            'sex_id': [sex_id],
            'location_id': locations,
            'year_id': self.demographics.year_id,
            'age_group_id': self.demographics.age_group_id
        })
        grid['time_lower'] = grid['year_id'].astype(int)
        grid['time_upper'] = grid['year_id'] + 1.
        grid = BaseInput(
            gbd_round_id=self.gbd_round_id).convert_to_age_lower_upper(df=grid)
        LOG.info("Adding covariates to avgint grid.")
        grid = self.add_covariates_to_data(df=grid)
        return grid

    def interpolate_country_covariate_values(self, df: pd.DataFrame, cov_dict: Dict[Union[float, str], pd.DataFrame]):
        """
        Interpolates the covariate values onto the data
        so that the non-standard ages and years match up to meaningful
        covariate values.
        """
        LOG.info(f"Interpolating and merging the country covariates.")
        interp_df = get_interpolated_covariate_values(
            data_df=df,
            covariate_dict=cov_dict,
            population_df=self.population.configure_for_dismod()
        )
        return interp_df

    def transform_country_covariates(self, df):
        """
        Transforms the covariate data with the transformation ID.
        :param df: (pd.DataFrame)
        :return: self
        """
        for c in self.covariate_specs.covariate_specs:
            if c.study_country == 'country':
                LOG.info(f"Transforming the data for country covariate "
                         f"{c.covariate_id}.")
                df[c.name] = df[c.name].apply(
                    lambda x: COVARIATE_TRANSFORMS[c.transformation_id](x)
                )
        return df

    def calculate_country_covariate_reference_values(
            self, parent_location_id: int, sex_id: int) -> CovariateSpecs:
        """
        Gets the country covariate reference value for a covariate ID and a
        parent location ID. Also gets the maximum difference between the
        reference value and covariate values observed.

        Run this when you're going to make a DisMod AT database for a specific
        parent location and sex ID.

        :param: (int)
        :param parent_location_id: (int)
        :param sex_id: (int)
        :return: List[CovariateSpec] list of the covariate specs with the
            correct reference values and max diff.
        """
        covariate_specs = copy(self.covariate_specs)

        age_min = self.dismod_data.age_lower.min()
        age_max = self.dismod_data.age_upper.max()
        time_min = self.dismod_data.time_lower.min()
        time_max = self.dismod_data.time_upper.max()

        children = self.location_dag.children(parent_location_id)

        for c in covariate_specs.covariate_specs:
            if c.study_country == 'study':
                if c.name == 's_sex':
                    c.reference = StudyCovConstants.SEX_COV_VALUE_MAP[
                        SEX_ID_TO_NAME[sex_id]]
                    c.max_difference = StudyCovConstants.MAX_DIFFERENCE_SEX_COV
                elif c.name == 's_one':
                    c.reference = StudyCovConstants.ONE_COV_VALUE
                    c.max_difference = StudyCovConstants.MAX_DIFFERENCE_ONE_COV
                else:
                    raise ValueError(f"The only two study covariates allowed are sex and one, you tried {c.name}.")
            elif c.study_country == 'country':
                LOG.info(f"Calculating the reference and max difference for country covariate {c.covariate_id}.")

                cov_df = self.country_covariate_data[c.covariate_id]
                parent_df = (
                    cov_df.loc[cov_df.location_id == parent_location_id].copy()
                )
                child_df = cov_df.loc[cov_df.location_id.isin(children)].copy()
                all_loc_df = pd.concat([child_df, parent_df], axis=0)

                # if there is no data for the parent location at all (which
                # there should be provided by Central Comp)
                # then we are going to set the reference value to 0.
                if cov_df.empty:
                    reference_value = 0
                    max_difference = np.nan
                else:
                    pop_df = self.population.configure_for_dismod()
                    pop_df = (
                        pop_df.loc[pop_df.location_id == parent_location_id].copy()
                    )

                    df_to_interp = pd.DataFrame({
                        'location_id': parent_location_id,
                        'sex_id': [sex_id],
                        'age_lower': [age_min], 'age_upper': [age_max],
                        'time_lower': [time_min], 'time_upper': [time_max]
                    })
                    reference_value = get_interpolated_covariate_values(
                        data_df=df_to_interp,
                        covariate_dict={c.name: parent_df},
                        population_df=pop_df
                    )[c.name].iloc[0]
                    max_difference = np.max(
                        np.abs(all_loc_df.mean_value - reference_value)
                    ) + CascadeConstants.PRECISION_FOR_REFERENCE_VALUES

                c.reference = reference_value
                c.max_difference = max_difference
        covariate_specs.create_covariate_list()
        return covariate_specs

    def reset_index(self, drop, inplace):
        pass
Example #3
0
def make_cascade_dag(model_version_id: int, dag: LocationDAG,
                     location_start: int, sex_start: int, split_sex: bool,
                     n_sim: int = 100, n_pool: int = 100, skip_configure: bool = False) -> List[_CascadeOperation]:
    """
    Make a traditional cascade dag for a model version. Relies on a location DAG and a starting
    point in the DAG for locations and sexes.

    Parameters
    ----------
    model_version_id
        Model version ID
    dag
        A location DAG that specifies the location hierarchy
    location_start
        Where to start in the location hierarchy
    sex_start
        Which sex to start with, can be most detailed or both.
    split_sex
        Whether or not to split sex into most detailed. If not, then will just stay at 'both' sex.
    n_sim
        Number of simulations to do in sample simulate
    n_pool
        Number of multiprocessing pools to create during sample simulate
    skip_configure
        Don't configure inputs. Only do this if it's already been done.

    Returns
    -------
    List of _CascadeOperation.
    """

    tasks = []

    sexes = [sex_start]
    if SEX_ID_TO_NAME[sex_start] == 'Both':
        if split_sex:
            sexes = [
                SEX_NAME_TO_ID['Female'],
                SEX_NAME_TO_ID['Male']
            ]

    top_level = root_fit(
        model_version_id=model_version_id,
        location_id=location_start, sex_id=sex_start,
        child_locations=dag.children(location_start), child_sexes=sexes,
        mulcov_stats=True,
        skip_configure=skip_configure,
        n_sim=n_sim, n_pool=n_pool,
        ode_fit_strategy=True,
    )
    tasks += top_level
    for sex in sexes:
        for location1 in dag.children(location_start):
            branch_or_leaf(
                dag=dag, location_id=location1, sex=sex, model_version_id=model_version_id,
                parent_location=location_start, parent_sex=sex_start,
                n_sim=n_sim, n_pool=n_pool, upstream=[top_level[-1].command], tasks=tasks
            )
    tasks.append(Upload(
        model_version_id=model_version_id,
        fit=True, prior=True,
        upstream_commands=[tasks[-1].command],
        executor_parameters={
            'm_mem_free': '50G'
        }
    ))
    return tasks
Example #4
0
    def construct_two_level_model(self, location_dag: LocationDAG, parent_location_id: int,
                                  covariate_specs: CovariateSpecs,
                                  weights: Optional[Dict[str, Var]] = None,
                                  omega_df: Optional[pd.DataFrame] = None,
                                  update_prior: Optional[Dict[str, Dict[str, np.ndarray]]] = None,
                                  min_cv: Optional[Dict[str, Dict[str, float]]] = None,
                                  update_mulcov_prior: Optional[Dict[Tuple[str, str, str], _Prior]] = None):
        """
        Construct a Model object for a parent location and its children.

        Parameters
        ----------
        location_dag
            Location DAG specifying the location hierarchy
        parent_location_id
            Parent location to build the model for
        covariate_specs
            covariate specifications, specifically will use covariate_specs.covariate_multipliers
        weights
        omega_df
            data frame with omega values in it (other cause mortality)
        update_prior
            dictionary of dictionary for prior updates to rates
        update_mulcov_prior
            dictionary of mulcov prior updates
        min_cv
            dictionary (can be defaultdict) for minimum coefficient of variation
            keyed by cascade level, then by rate
        """
        children = location_dag.children(parent_location_id)
        cascade_level = str(location_dag.depth(parent_location_id)) # min_cv lookup expects a string key
        is_leaf = location_dag.is_leaf(parent_location_id)
        if is_leaf:
            cascade_level = MOST_DETAILED_CASCADE_LEVEL

        model = Model(
            nonzero_rates=self.settings.rate,
            parent_location=parent_location_id,
            child_location=children,
            covariates=covariate_specs.covariate_list,
            weights=weights
        )

        # First construct the rate grid, and update with prior
        # information from a parent for value, dage, and dtime.
        for smooth in self.settings.rate:
            rate_grid = self.get_smoothing_grid(rate=smooth)
            if update_prior is not None:
                if smooth.rate in update_prior:
                    self.override_priors(rate_grid=rate_grid, update_dict=update_prior[smooth.rate])
                    if min_cv is not None:
                        self.apply_min_cv_to_prior_grid(
                            prior_grid=rate_grid.value, min_cv=min_cv[cascade_level][smooth.rate]
                        )
            model.rate[smooth.rate] = rate_grid
        
        # Second construct the covariate grids
        for mulcov in covariate_specs.covariate_multipliers:
            grid = smooth_grid_from_smoothing_form(
                    default_age_time=self.age_time_grid,
                    single_age_time=self.single_age_time_grid,
                    smooth=mulcov.grid_spec
                )
            if update_mulcov_prior is not None and (mulcov.group, *mulcov.key) in update_mulcov_prior:
                ages = grid.ages
                times = grid.times
                for age, time in itertools.product(ages, times):
                    lb = grid.value[age, time].lower
                    ub = grid.value[age, time].upper
                    update_mulcov_prior[(mulcov.group, *mulcov.key)].lower = lb
                    update_mulcov_prior[(mulcov.group, *mulcov.key)].upper = ub
                    grid.value[age, time] = update_mulcov_prior[(mulcov.group, *mulcov.key)] 
            model[mulcov.group][mulcov.key] = grid

        # Construct the random effect grids, based on the parent location
        # specified.
        if self.settings.random_effect:
            random_effect_by_rate = defaultdict(list)
            for smooth in self.settings.random_effect:
                re_grid = smooth_grid_from_smoothing_form(
                    default_age_time=self.age_time_grid,
                    single_age_time=self.single_age_time_grid,
                    smooth=smooth
                )
                if not smooth.is_field_unset("location") and smooth.location in model.child_location:
                    location = smooth.location
                else:
                    location = None
                model.random_effect[(smooth.rate, location)] = re_grid
                random_effect_by_rate[smooth.rate].append(location)

            for rate_to_check, locations in random_effect_by_rate.items():
                if locations != [None] and set(locations) != set(model.child_location):
                    raise RuntimeError(f"Random effect for {rate_to_check} does not have "
                                       f"entries for all child locations, only {locations} "
                                       f"instead of {model.child_location}.")

        # Lastly, constrain omega for the parent and the random effects for the children.
        if self.settings.model.constrain_omega:
            LOG.info("Adding the omega constraint.")
            
            if omega_df is None:
                raise RuntimeError("Need an omega data frame in order to constrain omega.")
            
            parent_omega = omega_df.loc[omega_df.location_id == parent_location_id].copy()
            if parent_omega.empty:
                raise RuntimeError(f"No omega values for location {parent_location_id}.")

            omega = rectangular_data_to_var(gridded_data=parent_omega)
            model.rate["omega"] = constraint_from_rectangular_data(
                rate_var=omega,
                default_age_time=self.age_time_grid
            )
            
            locations = set(omega_df.location_id.unique().tolist())
            children_without_omega = set(children) - set(locations)
            if children_without_omega:
                LOG.warning(f"Children of {parent_location_id} missing omega {children_without_omega}"
                            f"so not including child omega constraints")
            else:
                for child in children:
                    child_omega = omega_df.loc[omega_df.location_id == child].copy()
                    assert not child_omega.empty
                    child_rate = rectangular_data_to_var(gridded_data=child_omega)

                    def child_effect(age, time):
                        return np.log(child_rate(age, time) / omega(age, time))
                    
                    model.random_effect[("omega", child)] = constraint_from_rectangular_data(
                        rate_var=child_effect,
                        default_age_time=self.age_time_grid
                    )
        return model