Example #1
0
def cascade_resnet(pr,
                   net,
                   input_layer,
                   n=5,
                   nf=64,
                   b=lasagne.init.Constant,
                   **kwargs):
    shape = lasagne.layers.get_output_shape(input_layer)
    n_channel = shape[1]
    net[pr + 'conv1'] = l.Conv(input_layer, nf, 3, b=b(), name=pr + 'conv1')

    for i in range(2, n):
        net[pr + 'conv%d' % i] = l.Conv(net[pr + 'conv%d' % (i - 1)],
                                        nf,
                                        3,
                                        b=b(),
                                        name=pr + 'conv%d' % i)

    net[pr + 'conv_aggr'] = l.ConvAggr(net[pr + 'conv%d' % (n - 1)],
                                       n_channel,
                                       3,
                                       b=b(),
                                       name=pr + 'conv_aggr')
    net[pr + 'res'] = l.ResidualLayer([net[pr + 'conv_aggr'], input_layer],
                                      name=pr + 'res')
    output_layer = net[pr + 'res']
    return net, output_layer
Example #2
0
def cascade_resnet_3d_avg(pr, net, input_layer, n=5, nf=64,
                          b=lasagne.init.Constant, frame_dist=range(5),
                          **kwargs):
    shape = lasagne.layers.get_output_shape(input_layer)
    n_channel = shape[1]
    divide_by_n = kwargs['cascade_i'] != 0
    k = (3, 3, 3)

    # Data sharing layer
    net[pr+'kavg'] = l.AverageInKspaceLayer([input_layer, net['mask']],
                                            shape,
                                            frame_dist=frame_dist,
                                            divide_by_n=divide_by_n,
                                            clipped=False)
    # Conv layers
    net[pr+'conv1'] = l.Conv3D(net[pr+'kavg'], nf, k, b=b(), name=pr+'conv1')

    for i in xrange(2, n):
        net[pr+'conv%d'%i] = l.Conv3D(net[pr+'conv%d'%(i-1)], nf, k, b=b(),
                                      name=pr+'conv%d'%i)

    net[pr+'conv_aggr'] = l.Conv3DAggr(net[pr+'conv%d'%(n-1)], n_channel, k,
                                       b=b(), name=pr+'conv_aggr')
    net[pr+'res'] = l.ResidualLayer([net[pr+'conv_aggr'], input_layer],
                                    name=pr+'res')
    output_layer = net[pr+'res']
    return net, output_layer
Example #3
0
def cascade_Unet(pr,
                 net,
                 input_layer,
                 n=5,
                 nf=64,
                 b=lasagne.init.Constant,
                 **kwargs):
    shape = lasagne.layers.get_output_shape(input_layer)
    n_channel = shape[1]
    net[pr + 'conv1'] = l.Conv(input_layer, nf, 3, b=b(), name=pr + 'conv1')

    #changed this part from cascade_resnet
    # solved: (contracting path -> sizes need to be equal), (padding problems -> need to have same size in the end -> stride and padding parameters do not change problem)
    net[pr + 'conv2'] = l.Conv(net[pr + 'conv1'],
                               nf,
                               3,
                               b=b(),
                               name=pr + 'conv2')
    net[pr + 'max1'] = l.MaxPool(net[pr + 'conv2'],
                                 2,
                                 stride=2,
                                 pad=(0, 0),
                                 name=pr + 'max1')

    net[pr + 'conv3'] = l.Conv(net[pr + 'max1'],
                               nf * 2,
                               3,
                               b=b(),
                               name=pr + 'conv3')
    net[pr + 'conv4'] = l.Conv(net[pr + 'conv3'],
                               nf * 2,
                               3,
                               b=b(),
                               name=pr + 'conv4')
    net[pr + 'max2'] = l.MaxPool(net[pr + 'conv4'],
                                 2,
                                 stride=2,
                                 pad=(1, 1),
                                 name=pr + 'max2')

    net[pr + 'conv5'] = l.Conv(net[pr + 'max2'],
                               nf * 4,
                               3,
                               b=b(),
                               name=pr + 'conv5')
    net[pr + 'conv6'] = l.Conv(net[pr + 'conv5'],
                               nf * 4,
                               3,
                               b=b(),
                               name=pr + 'conv6')
    net[pr + 'deconv1'] = l.Deconv(net[pr + 'conv6'],
                                   nf * 2,
                                   2,
                                   stride=2,
                                   crop='full',
                                   b=b(),
                                   name=pr + 'deconv1')

    #shape1 = lasagne.layers.get_output_shape(net[pr+'conv3'])
    #shape2 = lasagne.layers.get_output_shape(net[pr+'deconv1'])
    #print(shape1)
    #print(shape2)

    #additional input conv4 (contracting path)
    net[pr + 'concat1'] = lasagne.layers.concat(
        [net[pr + 'deconv1'], net[pr + 'conv4']])
    net[pr + 'conv7'] = l.Conv(net[pr + 'concat1'],
                               nf * 2,
                               3,
                               b=b(),
                               name=pr + 'conv7')
    net[pr + 'conv8'] = l.Conv(net[pr + 'conv7'],
                               nf * 2,
                               3,
                               b=b(),
                               name=pr + 'conv8')
    net[pr + 'deconv2'] = l.Deconv(net[pr + 'conv8'],
                                   nf,
                                   2,
                                   stride=2,
                                   crop='valid',
                                   b=b(),
                                   name=pr + 'deconv2')

    #shape3 = lasagne.layers.get_output_shape(net[pr+'conv2'])
    #shape4 = lasagne.layers.get_output_shape(net[pr+'deconv2'])
    #print(shape3)
    #print(shape4)

    #additional input conv2 (contracting path)
    net[pr + 'concat2'] = lasagne.layers.concat(
        [net[pr + 'deconv2'], net[pr + 'conv2']])
    net[pr + 'conv9'] = l.Conv(net[pr + 'concat2'],
                               nf,
                               3,
                               b=b(),
                               name=pr + 'conv9')
    net[pr + 'conv10'] = l.Conv(net[pr + 'conv9'],
                                nf,
                                3,
                                b=b(),
                                name=pr + 'conv10')

    net[pr + 'conv_aggr'] = l.ConvAggr(net[pr + 'conv10'],
                                       n_channel,
                                       3,
                                       pad='same',
                                       b=b(),
                                       name=pr + 'conv_aggr')
    net[pr + 'res'] = l.ResidualLayer([net[pr + 'conv_aggr'], input_layer],
                                      name=pr + 'res')
    output_layer = lasagne.layers.reshape(net[pr + 'res'], shape)

    return net, output_layer