Example #1
0
def test_pruning_callback() -> None:
    """Quantize model"""
    loaders = {
        "train": DataLoader(
            MNIST(
                os.getcwd(), train=True, download=True, transform=ToTensor()
            ),
            batch_size=32,
        ),
        "valid": DataLoader(
            MNIST(
                os.getcwd(), train=False, download=True, transform=ToTensor()
            ),
            batch_size=32,
        ),
    }
    model = nn.Sequential(
        Flatten(), nn.Linear(784, 512), nn.ReLU(), nn.Linear(512, 10)
    )
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
    runner = dl.SupervisedRunner()
    runner.train(
        model=model,
        callbacks=[
            dl.DynamicQuantizationCallback(out_dir="./logs", backend="qnnpack")
        ],
        loaders=loaders,
        criterion=criterion,
        optimizer=optimizer,
        num_epochs=1,
        logdir="./logs",
        check=True,
    )
    assert os.path.isfile("./logs/best_quantized.pth")
def datasets_fn():
    """
    Docs.
    """
    dataset = MNIST(
        "./data", train=False, download=True, transform=ToTensor(),
    )
    return {"train": dataset, "valid": dataset}
Example #3
0
def simple_transform():
    """
    Simple Transform

    Returns:
        Compose: transforms

    """
    return Compose([ToTensor(), Normalize((0.1307, ), (0.3081, ))])
Example #4
0
def _get_loaders(*, root: str, batch_size: int = 1, num_workers: int = 1):
    data_transform = ToTensor()

    trainset = MNIST(root=root,
                     train=True,
                     download=True,
                     transform=data_transform)
    trainloader = DataLoader(trainset,
                             batch_size=batch_size,
                             num_workers=num_workers)
    testset = MNIST(root=root,
                    train=False,
                    download=True,
                    transform=data_transform)
    testloader = DataLoader(testset,
                            batch_size=batch_size,
                            num_workers=num_workers)

    loaders = collections.OrderedDict(train=trainloader, valid=testloader)

    return loaders
def main():
    generator = nn.Sequential(
        # We want to generate 128 coefficients to reshape into a 7x7x128 map
        nn.Linear(128, 128 * 7 * 7),
        nn.LeakyReLU(0.2, inplace=True),
        Lambda(lambda x: x.view(x.size(0), 128, 7, 7)),
        nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
        nn.LeakyReLU(0.2, inplace=True),
        nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
        nn.LeakyReLU(0.2, inplace=True),
        nn.Conv2d(128, 1, (7, 7), padding=3),
        nn.Sigmoid(),
    )
    discriminator = nn.Sequential(
        nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1),
        nn.LeakyReLU(0.2, inplace=True),
        nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1),
        nn.LeakyReLU(0.2, inplace=True),
        GlobalMaxPool2d(),
        Flatten(),
        nn.Linear(128, 1),
    )

    model = {"generator": generator, "discriminator": discriminator}
    optimizer = {
        "generator":
        torch.optim.Adam(generator.parameters(), lr=0.0003,
                         betas=(0.5, 0.999)),
        "discriminator":
        torch.optim.Adam(discriminator.parameters(),
                         lr=0.0003,
                         betas=(0.5, 0.999)),
    }
    loaders = {
        "train":
        DataLoader(
            MNIST(
                "./data",
                train=True,
                download=True,
                transform=ToTensor(),
            ),
            batch_size=32,
        ),
    }

    runner = CustomRunner()
    runner.train(
        model=model,
        optimizer=optimizer,
        loaders=loaders,
        callbacks=[
            dl.OptimizerCallback(optimizer_key="generator",
                                 metric_key="loss_generator"),
            dl.OptimizerCallback(optimizer_key="discriminator",
                                 metric_key="loss_discriminator"),
        ],
        main_metric="loss_generator",
        num_epochs=20,
        verbose=True,
        logdir="./logs_gan",
        check=True,
    )
Example #6
0
    nn.Linear(128, 1))

model = {"generator": generator, "discriminator": discriminator}
optimizer = {
    "generator":
    torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
    "discriminator":
    torch.optim.Adam(discriminator.parameters(), lr=0.0003,
                     betas=(0.5, 0.999)),
}
loaders = {
    "train":
    DataLoader(MNIST(os.getcwd(),
                     train=True,
                     download=True,
                     transform=ToTensor()),
               batch_size=32),
}


class CustomRunner(dl.Runner):
    def _handle_batch(self, batch):
        real_images, _ = batch
        batch_metrics = {}

        # Sample random points in the latent space
        batch_size = real_images.shape[0]
        random_latent_vectors = torch.randn(batch_size,
                                            latent_dim).to(self.device)

        # Decode them to fake images
Example #7
0
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader

from catalyst import dl, metrics
from catalyst.contrib.data.cv import ToTensor
from catalyst.contrib.datasets import MNIST

model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train":
    DataLoader(
        MNIST("./data", train=True, download=True, transform=ToTensor()),
        batch_size=32,
    ),
}


class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))

    def _handle_batch(self, batch):
        # model train/valid step
        x, y = batch
        y_hat = self.model(x.view(x.size(0), -1))