def _create_generator(self, sim_params):
        if self.perf_tracker is None:
            self.perf_tracker = get_algo_object(algo_name=self.algo_namespace,
                                                key='perf_tracker')

        # Call the simulation trading algorithm for side-effects:
        # it creates the perf tracker
        TradingAlgorithm._create_generator(self, sim_params)
        self.trading_client = ExchangeAlgorithmExecutor(
            self,
            sim_params,
            self.data_portal,
            self._create_clock(),
            self._create_benchmark_source(),
            self.restrictions,
            universe_func=self._calculate_universe)

        return self.trading_client.transform()
Example #2
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, data, bundle,
         bundle_timestamp, start, end, output, print_algo, local_namespace,
         environ, live, exchange, algo_namespace, base_currency, live_graph):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    mode = 'live' if live else 'backtest'
    log.info('running algo in {mode} mode'.format(mode=mode))

    if live and exchange is not None:
        exchange_name = exchange
        start = pd.Timestamp.utcnow()
        end = start + timedelta(minutes=1439)

        portfolio = get_algo_object(algo_name=algo_namespace,
                                    key='portfolio_{}'.format(exchange_name),
                                    environ=environ)
        if portfolio is None:
            portfolio = ExchangePortfolio(start_date=pd.Timestamp.utcnow())

        exchange_auth = get_exchange_auth(exchange_name)
        if exchange_name == 'bitfinex':
            exchange = Bitfinex(key=exchange_auth['key'],
                                secret=exchange_auth['secret'],
                                base_currency=base_currency,
                                portfolio=portfolio)
        elif exchange_name == 'bittrex':
            exchange = Bittrex(key=exchange_auth['key'],
                               secret=exchange_auth['secret'],
                               base_currency=base_currency,
                               portfolio=portfolio)
        else:
            raise NotImplementedError('exchange not supported: %s' %
                                      exchange_name)

    open_calendar = get_calendar('OPEN')
    sim_params = create_simulation_parameters(
        start=start,
        end=end,
        capital_base=capital_base,
        data_frequency=data_frequency,
        emission_rate=data_frequency,
    )

    if live and exchange is not None:
        env = TradingEnvironment(environ=environ,
                                 exchange_tz='UTC',
                                 asset_db_path=None)
        env.asset_finder = AssetFinderExchange(exchange)

        data = DataPortalExchange(exchange=exchange,
                                  asset_finder=env.asset_finder,
                                  trading_calendar=open_calendar,
                                  first_trading_day=pd.to_datetime('today',
                                                                   utc=True))
        choose_loader = None

        def fetch_capital_base(attempt_index=0):
            """
            Fetch the base currency amount required to bootstrap
            the algorithm against the exchange.

            The algorithm cannot continue without this value.

            :param attempt_index:
            :return capital_base: the amount of base currency available for
            trading
            """
            try:
                log.debug('retrieving capital base in {} to bootstrap '
                          'exchange {}'.format(base_currency, exchange_name))
                balances = exchange.get_balances()
            except ExchangeRequestError as e:
                if attempt_index < 20:
                    sleep(5)
                    return fetch_capital_base(attempt_index + 1)
                else:
                    raise ExchangeRequestErrorTooManyAttempts(
                        attempts=attempt_index, error=e)

            if base_currency in balances:
                return balances[base_currency]
            else:
                raise BaseCurrencyNotFoundError(base_currency=base_currency,
                                                exchange=exchange_name)

        sim_params = create_simulation_parameters(
            start=start,
            end=end,
            capital_base=fetch_capital_base(),
            emission_rate='minute',
            data_frequency='minute')

    elif bundle is not None:
        bundles = bundle.split(',')

        def get_trading_env_and_data(bundles):
            env = data = None

            b = 'poloniex'
            if len(bundles) == 0:
                return env, data
            elif len(bundles) == 1:
                b = bundles[0]

            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            prefix, connstr = re.split(
                r'sqlite:///',
                str(bundle_data.asset_finder.engine.url),
                maxsplit=1,
            )
            if prefix:
                raise ValueError(
                    "invalid url %r, must begin with 'sqlite:///'" %
                    str(bundle_data.asset_finder.engine.url), )

            env = TradingEnvironment(
                load=partial(load_crypto_market_data,
                             bundle=b,
                             bundle_data=bundle_data,
                             environ=environ),
                bm_symbol='USDT_BTC',
                trading_calendar=open_calendar,
                asset_db_path=connstr,
                environ=environ,
            )

            first_trading_day = bundle_data.minute_bar_reader.first_trading_day

            data = DataPortal(
                env.asset_finder,
                open_calendar,
                first_trading_day=first_trading_day,
                minute_reader=bundle_data.minute_bar_reader,
                five_minute_reader=bundle_data.five_minute_bar_reader,
                daily_reader=bundle_data.daily_bar_reader,
                adjustment_reader=bundle_data.adjustment_reader,
            )

            return env, data

        def get_loader_for_bundle(b):
            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            if b == 'poloniex':
                return CryptoPricingLoader(
                    bundle_data,
                    data_frequency,
                    CryptoPricing,
                )
            elif b == 'quandl':
                return USEquityPricingLoader(
                    bundle_data,
                    data_frequency,
                    USEquityPricing,
                )
            raise ValueError("No PipelineLoader registered for bundle %s." % b)

        loaders = [get_loader_for_bundle(b) for b in bundles]
        env, data = get_trading_env_and_data(bundles)

        def choose_loader(column):
            for loader in loaders:
                if column in loader.columns:
                    return loader
            raise ValueError("No PipelineLoader registered for column %s." %
                             column)

    else:
        env = TradingEnvironment(environ=environ)
        choose_loader = None

    TradingAlgorithmClass = (partial(ExchangeTradingAlgorithm,
                                     exchange=exchange,
                                     algo_namespace=algo_namespace,
                                     live_graph=live_graph)
                             if live and exchange else TradingAlgorithm)

    perf = TradingAlgorithmClass(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=sim_params,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run(
            data,
            overwrite_sim_params=False,
        )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf
Example #3
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, data, bundle,
         bundle_timestamp, start, end, output, print_algo, local_namespace,
         environ, live, exchange, algo_namespace, base_currency, live_graph):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    mode = 'live' if live else 'backtest'
    log.info('running algo in {mode} mode'.format(mode=mode))

    exchange_name = exchange
    if exchange_name is None:
        raise ValueError('Please specify at least one exchange.')

    exchange_list = [x.strip().lower() for x in exchange.split(',')]

    exchanges = dict()
    for exchange_name in exchange_list:

        # Looking for the portfolio from the cache first
        portfolio = get_algo_object(algo_name=algo_namespace,
                                    key='portfolio_{}'.format(exchange_name),
                                    environ=environ)

        if portfolio is None:
            portfolio = ExchangePortfolio(start_date=pd.Timestamp.utcnow())

        # This corresponds to the json file containing api token info
        exchange_auth = get_exchange_auth(exchange_name)

        if live and (exchange_auth['key'] == ''
                     or exchange_auth['secret'] == ''):
            raise ExchangeAuthEmpty(exchange=exchange_name.title(),
                                    filename=os.path.join(
                                        get_exchange_folder(
                                            exchange_name, environ),
                                        'auth.json'))

        if exchange_name == 'bitfinex':
            exchanges[exchange_name] = Bitfinex(key=exchange_auth['key'],
                                                secret=exchange_auth['secret'],
                                                base_currency=base_currency,
                                                portfolio=portfolio)
        elif exchange_name == 'bittrex':
            exchanges[exchange_name] = Bittrex(key=exchange_auth['key'],
                                               secret=exchange_auth['secret'],
                                               base_currency=base_currency,
                                               portfolio=portfolio)
        elif exchange_name == 'poloniex':
            exchanges[exchange_name] = Poloniex(key=exchange_auth['key'],
                                                secret=exchange_auth['secret'],
                                                base_currency=base_currency,
                                                portfolio=portfolio)
        else:
            raise ExchangeNotFoundError(exchange_name=exchange_name)

    open_calendar = get_calendar('OPEN')

    env = TradingEnvironment(
        load=partial(load_crypto_market_data,
                     environ=environ,
                     start_dt=start,
                     end_dt=end),
        environ=environ,
        exchange_tz='UTC',
        asset_db_path=None  # We don't need an asset db, we have exchanges
    )
    env.asset_finder = AssetFinderExchange()
    choose_loader = None  # TODO: use the DataPortal for in the algorithm class for this

    if live:
        start = pd.Timestamp.utcnow()

        # TODO: fix the end data.
        end = start + timedelta(hours=8760)

        data = DataPortalExchangeLive(exchanges=exchanges,
                                      asset_finder=env.asset_finder,
                                      trading_calendar=open_calendar,
                                      first_trading_day=pd.to_datetime(
                                          'today', utc=True))

        def fetch_capital_base(exchange, attempt_index=0):
            """
            Fetch the base currency amount required to bootstrap
            the algorithm against the exchange.

            The algorithm cannot continue without this value.

            :param exchange: the targeted exchange
            :param attempt_index:
            :return capital_base: the amount of base currency available for
            trading
            """
            try:
                log.debug('retrieving capital base in {} to bootstrap '
                          'exchange {}'.format(base_currency, exchange_name))
                balances = exchange.get_balances()
            except ExchangeRequestError as e:
                if attempt_index < 20:
                    log.warn('could not retrieve balances on {}: {}'.format(
                        exchange.name, e))
                    sleep(5)
                    return fetch_capital_base(exchange, attempt_index + 1)

                else:
                    raise ExchangeRequestErrorTooManyAttempts(
                        attempts=attempt_index, error=e)

            if base_currency in balances:
                return balances[base_currency]
            else:
                raise BaseCurrencyNotFoundError(base_currency=base_currency,
                                                exchange=exchange_name)

        capital_base = 0
        for exchange_name in exchanges:
            exchange = exchanges[exchange_name]
            capital_base += fetch_capital_base(exchange)

        sim_params = create_simulation_parameters(start=start,
                                                  end=end,
                                                  capital_base=capital_base,
                                                  emission_rate='minute',
                                                  data_frequency='minute')

        # TODO: use the constructor instead
        sim_params._arena = 'live'

        algorithm_class = partial(ExchangeTradingAlgorithmLive,
                                  exchanges=exchanges,
                                  algo_namespace=algo_namespace,
                                  live_graph=live_graph)
    else:
        # Removed the existing Poloniex fork to keep things simple
        # We can add back the complexity if required.

        # I don't think that we should have arbitrary price data bundles
        # Instead, we should center this data around exchanges.
        # We still need to support bundles for other misc data, but we
        # can handle this later.

        data = DataPortalExchangeBacktest(exchanges=exchanges,
                                          asset_finder=None,
                                          trading_calendar=open_calendar,
                                          first_trading_day=start,
                                          last_available_session=end)

        sim_params = create_simulation_parameters(
            start=start,
            end=end,
            capital_base=capital_base,
            data_frequency=data_frequency,
            emission_rate=data_frequency,
        )

        algorithm_class = partial(ExchangeTradingAlgorithmBacktest,
                                  exchanges=exchanges)

    perf = algorithm_class(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=sim_params,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run(
            data,
            overwrite_sim_params=False,
        )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf