Example #1
0
def get_cat_dogs_dataset(
    dirs: str = "/app/data/data_cat_dogs/*",
    extension: str = "*.jpg",
    test_size: float = 0.2,
    random_state: int = 42,
    tag_file_path: tp.Optional[str] = None,
) -> tp.Tuple[tp.Dict[str, tp.Any], tp.Dict[str, tp.Any], int]:
    dataset = utils.create_dataset(dirs=dirs, extension=extension)
    df = utils.create_dataframe(dataset, columns=["class", "filepath"])

    tag_to_label = utils.get_dataset_labeling(df, "class")
    if tag_file_path is not None:
        with open(tag_file_path, "w") as file:
            json.dump(tag_to_label, file)

    df_with_labels = utils.map_dataframe(
        df,
        tag_column="class",
        class_column="label",
        tag2class=tag_to_label,
        verbose=False,
    )

    train_data, valid_data = utils.split_dataframe_train_test(
        df_with_labels, test_size=test_size, random_state=random_state)
    return (
        train_data.to_dict("records"),
        valid_data.to_dict("records"),
        len(tag_to_label),
    )
Example #2
0
def prepare_splits(args):
    tag2class = dict(safitty.load(args.labeling))
    df_with_labels = map_dataframe(pd.read_csv(args.df),
                                   tag_column="class",
                                   class_column="label",
                                   tag2class=tag2class,
                                   verbose=False)
    train_data, val_data = train_test_split(df_with_labels,
                                            random_state=args.seed,
                                            test_size=args.test)
    train_data.to_csv(os.path.join(args.out_path, 'train.csv'), index=False)
    val_data.to_csv(os.path.join(args.out_path, 'valid.csv'), index=False)