Example #1
0
def observe_and_act(actor: base_actor.BaseActor,
                    caterpillar: Caterpillar,
                    disable_list: list,
                    broken_value=0,
                    episode=None):
    assert np.all(np.array(disable_list) < config.somites)

    if disable_list is None:
        disable_list = []
    mask = np.ones(config.somites)
    mask[disable_list] = 0
    bias = np.zeros(config.somites)
    bias[disable_list] = broken_value

    frictions = caterpillar.frictions_x()
    tensions = caterpillar.tensions()
    somite_phases = caterpillar.somite_phases()
    gripper_phases = caterpillar.gripper_phases()
    phases = np.concatenate((somite_phases, gripper_phases))
    state = np.concatenate([frictions * mask + bias, phases, tensions])
    action = actor.get_action(state)

    observation = (np.concatenate(
        (somite_phases, gripper_phases)), frictions, tensions)
    return observation, action
def run_caterpillar(actor,
                    save_dir: str,
                    steps: int,
                    disable_list=None,
                    broken_value=0):
    if disable_list is None:
        disable_list = []

    caterpillar = Caterpillar(config.somites, config.oscillators_list,
                              config.caterpillar_params)

    # Record during sampling
    sim_distance_file = DataCSVSaver(os.path.join(save_dir, "distance.txt"),
                                     ("step", "distance"))
    sim_phase_diffs_file = DataCSVSaver(
        os.path.join(save_dir, "phase_diffs.txt"),
        ["step"] + ["phi_{}".format(i) for i in range(config.oscillators)])
    sim_phases_file = DataCSVSaver(
        os.path.join(save_dir, "phases.txt"),
        ["step"] + ["phi_{}".format(i) for i in range(config.oscillators)])
    sim_actions_file = DataCSVSaver(
        os.path.join(save_dir, "actions.txt"),
        ["step"] + ["action_{}".format(i) for i in range(config.oscillators)])
    sim_frictions_file = DataCSVSaver(
        os.path.join(save_dir, "frictions.txt"),
        ["step"] + ["friction_{}".format(i) for i in range(config.somites)])
    sim_tension_file = DataCSVSaver(
        os.path.join(save_dir, "tensions.txt"),
        ["step"] + ["tension_{}".format(i) for i in range(config.somites - 2)])
    sim_angle_range_file = DataCSVSaver(
        os.path.join(save_dir, "angle_ranges.txt"),
        ["step"] + ["phi_{}".format(i) for i in range(config.oscillators)])

    locomotion_distance = utils.locomotion_distance_logger(
        caterpillar)  # closure to keep locomotion distance
    for step in range(steps):
        obv, action = observe_and_act(actor,
                                      caterpillar,
                                      disable_list=disable_list,
                                      broken_value=broken_value)
        feedbacks, angle_ranges = action[0], action[1]
        caterpillar.set_oscillation_ranges(tuple(angle_ranges))
        caterpillar.step_with_feedbacks(config.params["time_delta"],
                                        tuple(feedbacks))

        # Save data
        phases, frictions, tensions = obv
        sim_distance_file.append_data(step, locomotion_distance(caterpillar))
        sim_phase_diffs_file.append_data(step, *utils.phase_diffs(phases))
        sim_phases_file.append_data(step, *phases)
        sim_frictions_file.append_data(step, *frictions)
        sim_tension_file.append_data(step, *tensions)
        sim_actions_file.append_data(step, *action[0])
        sim_angle_range_file.append_data(step, *action[1])

    caterpillar.save_simulation("{}/render.json".format(save_dir))

    return locomotion_distance(caterpillar)
def run_simulation(sim_vals) -> float:
    """
    Run caterpillar with a policy given in argument.

    This function is for multiprocessing.
    sim_vals: (
        steps: int,
        actor_module_name: str,
        actor_params: [np.array(params_0), np.array(params_1), ...],
        disable_list: list
    )
    """
    steps, actor_module_name, actor_params, disable_list = sim_vals
    assert isinstance(steps, int)
    # assert isinstance(actor_params, Iterable)
    assert isinstance(disable_list, Iterable)

    # Init actor
    actor_module = import_module(actor_module_name)
    actor = getattr(actor_module, config.COMMON_ACTOR_NAME)()
    actor.set_params(actor_params)

    # Init caterpillar
    caterpillar = Caterpillar(config.somites, config.oscillators_list,
                              config.grippers_list, config.caterpillar_params)
    locomotion_distance = utils.locomotion_distance_logger(caterpillar)

    # Run steps
    (accumulated_tension, ) = exec_steps(steps,
                                         actor,
                                         caterpillar,
                                         disable_list=disable_list)

    reward = locomotion_distance(caterpillar)
    return reward
def exec_steps(steps: int,
               actor: base_actor.BaseActor,
               caterpillar: Caterpillar,
               disable_list: list,
               episode=None) -> float:
    """
    Run caterpillar for designated steps.

    return run information which is (accumulated tensions,)
    """
    accumulated_tension = 0
    for step in range(steps):
        (_, _, tensions), action = caterpillar_runner.observe_and_act(
            actor, caterpillar, disable_list, episode=episode)
        accumulated_tension += np.sum(np.power(tensions, 2))

        feedbacks, angle_ranges = action[0], action[1]
        caterpillar.set_oscillation_ranges(tuple(angle_ranges))
        caterpillar.step_with_feedbacks(config.params["time_delta"],
                                        tuple(feedbacks))
    return (accumulated_tension, )
def run(agent: DDPG, steps: int, save_dir: str) -> float:
    sim_distance_file = DataCSVSaver(os.path.join(save_dir, "distance.txt"), ("step", "distance"))
    sim_somite_phase_diffs_file = DataCSVSaver(os.path.join(save_dir, "somite_phase_diffs.txt"), ["step"] + ["phi_{}".format(i) for i in range(config.oscillators)])
    sim_gripper_phase_diffs_file = DataCSVSaver(os.path.join(save_dir, "gripper_phase_diffs.txt"), ["step"] + ["phi_{}".format(i) for i in range(config.grippers)])
    sim_somite_phases_file = DataCSVSaver(os.path.join(save_dir, "somite_phases.txt"), ["step"] + ["phi_{}".format(i) for i in range(config.oscillators)])
    sim_gripper_phases_file = DataCSVSaver(os.path.join(save_dir, "gripper_phases.txt"), ["step"] + ["phi_{}".format(i) for i in range(config.grippers)])
    sim_somite_actions_file = DataCSVSaver(os.path.join(save_dir, "somite_actions.txt"), ["step"] + ["action_{}".format(i) for i in range(config.oscillators)])
    sim_gripper_actions_file = DataCSVSaver(os.path.join(save_dir, "gripper_actions.txt"), ["step"] + ["action_{}".format(i) for i in range(config.grippers)])
    sim_frictions_file = DataCSVSaver(os.path.join(save_dir, "frictions.txt"), ["step"] + ["friction_{}".format(i) for i in range(config.somites)])
    sim_tension_file = DataCSVSaver(os.path.join(save_dir, "tensions.txt"), ["step"] + ["tension_{}".format(i) for i in range(config.somites - 2)])

    caterpillar = Caterpillar(config.somites, config.oscillators_list, config.grippers_list, config.caterpillar_params)
    locomotion_distance = utils.locomotion_distance_logger(caterpillar)
    for step in range(steps):
        obs, somite_phases, gripper_phases = observe(caterpillar)
        actions = agent.act(obs)
        feedbacks_somite, feedbacks_gripper = actions[:config.oscillators], actions[config.oscillators:]
        caterpillar.step_with_feedbacks(config.params["time_delta"], tuple(feedbacks_somite), tuple(feedbacks_gripper))

        frictions, tensions, _, _ = np.split(
            obs, [config.somites, config.somites * 2 - 2, config.somites * 2 - 2 + config.oscillators])
        sim_distance_file.append_data(step, locomotion_distance(caterpillar))
        sim_somite_phase_diffs_file.append_data(step, *utils.phase_diffs(np.array(somite_phases)))
        sim_gripper_phase_diffs_file.append_data(step, *utils.phase_diffs(np.array(gripper_phases)))
        sim_somite_phases_file.append_data(step, *utils.mod2pi(np.array(somite_phases)))
        sim_gripper_phases_file.append_data(step, *utils.mod2pi(np.array(gripper_phases)))
        sim_frictions_file.append_data(step, *frictions)
        sim_tension_file.append_data(step, *tensions)
        sim_somite_actions_file.append_data(step, *feedbacks_somite)
        sim_gripper_actions_file.append_data(step, *feedbacks_gripper)

    caterpillar.save_simulation("{}/render.json".format(save_dir))
    return locomotion_distance(caterpillar)
def exec_steps(steps: int,
               actor: base_actor.BaseActor,
               caterpillar: Caterpillar,
               disable_list: list,
               episode=None) -> float:
    """
    Run caterpillar for designated steps.

    return run information which is (accumulated tensions,)
    """
    accumulated_tension = 0
    for step in range(steps):
        (_, _, tensions), action = caterpillar_runner.observe_and_act(
            actor, caterpillar, disable_list, episode=episode)
        accumulated_tension += np.sum(np.power(tensions, 2))
        feedbacks, gripping_phase_thresholds = action[0], action[1]

        for (oscillator_id, target_angle) in config.fixed_angles.items():
            caterpillar.set_target_angle(oscillator_id, target_angle)
        caterpillar.set_gripping_phase_thresholds(
            tuple(gripping_phase_thresholds))
        caterpillar.step_with_feedbacks(config.params["time_delta"],
                                        tuple(feedbacks[:config.oscillators]),
                                        tuple(feedbacks[config.oscillators:]))
    return (accumulated_tension, )
def new_caterpillar() -> Caterpillar:
    return Caterpillar(config.somites, config.oscillators_list,
                       config.caterpillar_params)
def train_caterpillar(save_dir: utils.SaveDir, actor_module_name: str):
    actor_module = import_module(actor_module_name)
    actor_class = getattr(actor_module, config.COMMON_ACTOR_NAME)
    actor = actor_class()

    # Dump train parameters
    config.print_config()
    config.dump_config(save_dir.log_dir(), actor.dump_config())

    pepg = PEPG(actor.params_num())
    pepg.set_parameters(
        np.fromiter(
            itertools.chain.from_iterable(
                [p.flatten().tolist() for p in actor.current_params()]),
            np.float64))

    distance_log = DataCSVSaver(
        os.path.join(save_dir.log_dir(), "distance.txt"),
        ("episode", "distance"))
    reward_log = DataCSVSaver(os.path.join(save_dir.log_dir(), "reward.txt"),
                              ("episode", "reward"))
    sigma_log = DataCSVSaver(os.path.join(save_dir.log_dir(), "sigma.txt"),
                             ("episode", "average sigma"))

    episode = 0
    while episode < config.params["episodes"]:
        current_mus = pepg.get_parameters()
        epsilons = pepg.sample_epsilons(config.params["batch_size"])
        params_sets = np.concatenate([
            current_mus[:, np.newaxis] + epsilons,
            current_mus[:, np.newaxis] - epsilons
        ],
                                     axis=1).T

        print("\nEpisode: {}".format(episode))
        print(
            "---------------------------------------------------------------------"
        )
        rewards = []

        try:
            with Pool(processes=config.exec_params["worker_processes"],
                      initializer=mute) as pool:
                rewards = pool.map(
                    run_simulation,
                    [(config.params["steps"], actor_module_name, p_set, [])
                     for p_set in params_sets])

            sample_num = epsilons.shape[1]
            r_plus = np.array(rewards[:sample_num])
            r_minus = np.array(rewards[sample_num:])
            nan_samples = np.where(np.isnan(r_plus) + np.isnan(r_minus))[0]
            # delete nan samples
            epsilons = np.delete(epsilons, nan_samples, axis=1)
            r_plus = np.delete(r_plus, nan_samples, axis=0)
            r_minus = np.delete(r_minus, nan_samples, axis=0)
            if epsilons.shape[1] > 0:
                pepg.update_parameters(epsilons, r_plus, r_minus)
                episode += 1

                # Try parameters after this episode --------------------------------------
                actor.set_params(pepg.get_parameters())
                caterpillar = Caterpillar(config.somites,
                                          config.oscillators_list,
                                          config.caterpillar_params)
                locomotion_distance = utils.locomotion_distance_logger(
                    caterpillar)

                (accumulated_tension, ) = exec_steps(config.params["steps"],
                                                     actor,
                                                     caterpillar, [],
                                                     episode=episode - 1)
                d = locomotion_distance(caterpillar)
                # reward = d - accumulated_tension / config.params["tension_divisor"]
                reward = d

                # Save parameter performance
                distance_log.append_data(episode, d)
                sigma_log.append_data(episode, np.mean(pepg.get_sigmas()))
                reward_log.append_data(episode, reward)

                announce = "  --- Distance: {}   Reward: {}".format(d, reward)
                print(announce)
            else:
                print("got nan position. update failed")

        except KeyboardInterrupt:
            command = input("\nSample? Finish? : ")
            if command in ["sample", "Sample"]:
                actor.set_params(pepg.get_parameters())
                test_current_params(actor, save_dir.log_dir(), episode)
                continue
            if command in ["finish", "Finish"]:
                print("Ending training ...")
                break

    actor.set_params(pepg.get_parameters())
    actor.save(os.path.join(save_dir.model_dir(), 'actor_model.pickle'))
    return actor
Example #9
0
def extract_caterpillar_position(caterpillar: Caterpillar):
    positions = caterpillar.somite_positions()
    index = int(np.floor(len(positions) / 2))
    # index = len(positions) - 1
    return positions[index][0]
def observe(caterpillar: Caterpillar) -> np.array:
    frictions = caterpillar.frictions_x()
    tensions = caterpillar.tensions()
    somite_phases = caterpillar.somite_phases()
    gripper_phases = caterpillar.gripper_phases()
    return np.concatenate((frictions, tensions, np.cos(somite_phases), np.sin(somite_phases), np.cos(gripper_phases), np.sin(gripper_phases))), somite_phases, gripper_phases
def  train(save_dir_path: str):
    agent = build_agent()

    reset_dir(save_dir_path)
    train_log_dir = os.path.join(save_dir_path, "train_log")
    os.makedirs(train_log_dir, exist_ok=True)

    config.dump_config(train_log_dir, {"RL method": "DDPG"})

    distance_log = DataCSVSaver(os.path.join(train_log_dir, "distance.txt"), ("episode", "distance"))

    ep = 0
    while ep < config.params['episodes']:
        try:
            caterpillar = Caterpillar(config.somites, config.oscillators_list, config.grippers_list, config.caterpillar_params)
            locomotion_distance = utils.locomotion_distance_logger(caterpillar)
            obs, _, _ = observe(caterpillar)
            position = 0 # current position
            reward = 0
            R = 0  # accumulated reward
            t = 0
            while t < STEPS:
                actions = agent.act_and_train(obs, reward)
                feedbacks_somite, feedbacks_gripper = actions[:config.oscillators], actions[config.oscillators:]
                caterpillar.step_with_feedbacks(config.params["time_delta"], tuple(feedbacks_somite), tuple(feedbacks_gripper))

                reward = locomotion_distance(caterpillar) - position
                if np.isnan(reward):
                    print("got invalid reward, {}".format(reward))
                    continue
                obs, _, _ = observe(caterpillar)
                R += reward
                position = position + reward
                t += 1
            print("epoch: {}   R: {}".format(ep+1, R))
            distance_log.append_data(ep+1, R)

            agent.stop_episode_and_train(obs, reward)
        except FloatingPointError as e:
            print("episode {} --- got floating point error, {}. Skip".format(ep, e))
            continue
        except KeyboardInterrupt:
            command = input("\nSample? Finish? : ")
            if command in ["sample", "Sample"]:
                steps = input("How many steps for this sample?: ")
                if steps == "":
                    utils.notice("default steps {}".format(config.params["default_sample_steps"]))
                    steps = config.params["default_sample_steps"]

                run_dir = os.path.join(train_log_dir, "train_result_ep{}".format(ep))
                os.makedirs(run_dir, exist_ok=True)
                distance = run(agent, int(steps), run_dir)
                print("test run for {} steps, moved distance {}".format(int(steps), distance))
                continue
            if command in ["finish", "Finish"]:
                print("Ending training ...")
                break
        else:
            ep += 1

    print('Finished. Saving to {}...'.format(save_dir_path))
    agent.save(save_dir_path)
Example #12
0
def run_caterpillar(actor,
                    save_dir: str,
                    steps: int,
                    disable_list=None,
                    broken_value=0):
    if disable_list is None:
        disable_list = []

    caterpillar = Caterpillar(config.somites, config.oscillators_list,
                              config.grippers_list, config.caterpillar_params)

    # Record during sampling
    sim_distance_file = DataCSVSaver(os.path.join(save_dir, "distance.txt"),
                                     ("step", "distance"))
    sim_somite_phase_diffs_file = DataCSVSaver(
        os.path.join(save_dir, "somite_phase_diffs.txt"),
        ["step"] + ["phi_{}".format(i) for i in range(config.oscillators)])
    sim_gripper_phase_diffs_file = DataCSVSaver(
        os.path.join(save_dir, "gripper_phase_diffs.txt"),
        ["step"] + ["phi_{}".format(i) for i in range(config.grippers)])
    sim_somite_phases_file = DataCSVSaver(
        os.path.join(save_dir, "somite_phases.txt"),
        ["step"] + ["phi_{}".format(i) for i in range(config.oscillators)])
    sim_gripper_phases_file = DataCSVSaver(
        os.path.join(save_dir, "gripper_phases.txt"),
        ["step"] + ["phi_{}".format(i) for i in range(config.grippers)])
    sim_somite_actions_file = DataCSVSaver(
        os.path.join(save_dir, "somite_actions.txt"),
        ["step"] + ["action_{}".format(i) for i in range(config.oscillators)])
    sim_gripper_actions_file = DataCSVSaver(
        os.path.join(save_dir, "gripper_actions.txt"),
        ["step"] + ["action_{}".format(i) for i in range(config.grippers)])
    sim_frictions_file = DataCSVSaver(
        os.path.join(save_dir, "frictions.txt"),
        ["step"] + ["friction_{}".format(i) for i in range(config.somites)])
    sim_tension_file = DataCSVSaver(
        os.path.join(save_dir, "tensions.txt"),
        ["step"] + ["tension_{}".format(i) for i in range(config.somites - 2)])
    sim_grip_thresholds_file = DataCSVSaver(
        os.path.join(save_dir, "grip_thresholds.txt"),
        ["step"] + ["gripper_{}".format(i) for i in range(config.grippers)])

    locomotion_distance = utils.locomotion_distance_logger(
        caterpillar)  # closure to keep locomotion distance
    for step in range(steps):
        obv, action = observe_and_act(actor,
                                      caterpillar,
                                      disable_list=disable_list,
                                      broken_value=broken_value)
        feedbacks, gripping_phase_thresholds = action[0], action[1]
        for (oscillator_id, target_angle) in config.fixed_angles.items():
            caterpillar.set_target_angle(oscillator_id, target_angle)
        caterpillar.set_gripping_phase_thresholds(
            tuple(gripping_phase_thresholds))
        caterpillar.step_with_feedbacks(config.params["time_delta"],
                                        tuple(feedbacks[:config.oscillators]),
                                        tuple(feedbacks[config.oscillators:]))

        # Save data
        phases, frictions, tensions = obv
        sim_distance_file.append_data(step, locomotion_distance(caterpillar))
        sim_somite_phase_diffs_file.append_data(
            step, *utils.phase_diffs(phases[:config.oscillators]))
        sim_gripper_phase_diffs_file.append_data(
            step, *utils.phase_diffs(phases[config.oscillators:]))
        sim_somite_phases_file.append_data(
            step, *utils.mod2pi(phases[:config.oscillators]))
        sim_gripper_phases_file.append_data(
            step, *utils.mod2pi(phases[config.oscillators:]))
        sim_frictions_file.append_data(step, *frictions)
        sim_tension_file.append_data(step, *tensions)
        sim_somite_actions_file.append_data(step,
                                            *feedbacks[:config.oscillators])
        sim_gripper_actions_file.append_data(step,
                                             *feedbacks[config.oscillators:])
        sim_grip_thresholds_file.append_data(step, *gripping_phase_thresholds)

    caterpillar.save_simulation("{}/render.json".format(save_dir))

    return locomotion_distance(caterpillar)