Example #1
0
    def __init__(self, reaction_model=None):
        """
        Class for `solving' for equilibrium coverages and rates as a 
        function of reaction parameters. This class acts as a base class 
        to be inherited by other solver classes, but is not 
        functional on its own. 

        rxn_parameters: list of necessary parameters to solve the kinetic 
        system. This will usually be populated by the scaler.

        A functional derived solver class must also contain the methods:

        get_coverage(): a function which returns coverages for each 
            adsorbate as a list [cvg_ads1,cvg_ads2,...]

        get_rate(): a function which returns steady-state reaction 
            rates for each elementary step as a list [rate_rxn1,rate_rxn2,...]

        get_residual(): a function for computing the norm of the residual. This
            is the condition which will be minimized to reach steady-state.

        compile(): a function to set-up/compile the solver.

        """
        if reaction_model is None:
            reaction_model = ReactionModel()
        self._rxm = reaction_model
        self._compiled = False
Example #2
0
 def __init__(self, reaction_model=None):
     if reaction_model is None:
         reaction_model = ReactionModel()
     self._rxm = reaction_model
     defaults = dict(
         cross_interaction_mode='geometric_mean',
         transition_state_cross_interaction_mode='intermediate_state',
         default_self_interaction_parameter=0,
         interaction_response_function='linear',
         interaction_response_parameters={
             'slope': 1,
             'cutoff': 0.25,
             'smoothing': 0.05
         },
         interaction_fitting_mode=None,
         input_overrides_fit=True,  #user inputs override fitted values
         interaction_strength=1,
         #weight interaction parameters by this
         numerical_delta_theta=None)
     self._rxm.update(defaults)
     self._required = {
         'cross_interaction_mode': str,
         'transition_state_cross_interaction_mode': str,
         'interaction_fitting_mode': None
     }
     self._log_strings = {
         'interaction_fitting_success':
         "interaction parameter ${param}@${surface} = ${paramval} (avg_error=${error})"
     }
Example #3
0
 def __init__(self,reaction_model=None):
     if reaction_model is None:
         reaction_model = ReactionModel()
     self._rxm = reaction_model
     self._solver_output = ['coverage','rate', #outputs requiring solver
             'turnover_frequency','selectivity','rate_control',
             'noninteracting_coverages']
Example #4
0
    def __init__(self,reaction_model = None):
        """Class for `scaling' descriptors to free energies of reaction and 
        activation (or other parameters). This class acts as a base class 
        to be inherited by other scaler classes, but is not 
        functional on its own. 

        This class contains the description of the microkinetic model 
        (adsorbate_names, gas_names, etc.) along with the temperature and 
        gas_pressures. In most cases these will automatically be populated 
        by the parent reaction_model class. 
        The scaler-specific attributes are:

        gas_energies: defines the energies of the gas-phase species. 
            This sets the references for the system.
        gas_thermo_mode: the mode for obtaining thermal contributions in 
            the gas phase. Default is to use the ideal gas approxmation.
        adsorbate_thermo_mode: the mode for obtaining thermal contributions 
            from adsorbed species. Default is to use the harmonic 
            adsorbate approximation.
        frequency_dict: a dictionary of vibrational frequencies (in eV) for 
            each gas/adsorbate. Should be of the form 
            frequency_dict[ads] = [freq1, freq2,...]. Needed for ideal gas or 
            harmonic adsorbate approximations.

        A functional derived scaler class must also contain the methods:

        get_electronic_energies(descriptors): a function to `scale' the 
            descriptors to electronic energies. Returns a dictionary of 
            the electronic energies of each species in the model.
        get_energetics(descriptors): a function to obtain the reaction 
            energetics from the descriptors. Should return a list of 
            length N (number of elementary reactions): 
            [[E_rxn1,E_a1],[E_rxn2,E_a2],...[E_rxnN,E_aN]]
        get_rxn_parameters(descriptors): a function to obtain all necessary 
            reaction parameters from the descriptors. Should return a list of 
            length N (number of elementary reactions): 
            [[param1_rxn1,param2_rxn1...]...[param1_rxnN,param2_rxnN...]]. 
            For a simple model this could be the same as get_energetics, 
            but models accounting for interactions may require more 
            parameters which can be scaled.
        """
        if reaction_model is None:
            reaction_model = ReactionModel()
        self._rxm = reaction_model
        defaults = dict(
		        parameter_mode = 'formation_energy',
                )

        self._rxm.update(defaults,override=False)
Example #5
0
 def __init__(self,reaction_model=ReactionModel()):
     self._rxm = reaction_model
     defaults = dict(
             cross_interaction_mode='geometric_mean',
             transition_state_cross_interaction_mode='intermediate_state',
             interaction_response_function = 'linear',
             interaction_response_parameters = {'max_coverage':1,'cutoff':0.25,
                 'smoothing':0.05},
             interaction_fitting_mode=None,
             interaction_strength = 1,
             #weight interaction parameters by this
             )
     self._rxm.update(defaults)
     self._required = {'cross_interaction_mode':str,
             'transition_state_cross_interaction_mode':str,
             'interaction_fitting_mode':None
             }
Example #6
0
    def __init__(self, reaction_model=None):
        if reaction_model is None:
            reaction_model = ReactionModel()
        self._rxm = reaction_model
        self._log_strings = {
            'harmonic_transition_state_warning':
            'averaging initial/final state thermal contributions for ${TS}',
            'shomate_warning':
            'temperature below shomate minumum for ${gas};' +
            ' Cp(${T}) and S(${T}) are used below ${T}.',
            'force_recompilation':
            'Enabling model.force_recompilation = True.  Necessary for field corrections',
        }

        # set defaults
        defaults = dict(
            gas_thermo_mode='ideal_gas',
            adsorbate_thermo_mode='harmonic_adsorbate',
            electrochemical_thermo_mode='simple_electrochemical',
            pressure_mode='static',
            thermodynamic_corrections=['gas', 'adsorbate'],
            thermodynamic_variables=[
                'temperature', 'gas_pressures', 'voltage', 'beta', 'pH', 'Upzc'
            ],
            ideal_gas_params=catmap.data.ideal_gas_params,
            fixed_entropy_dict=catmap.data.fixed_entropy_dict,
            shomate_params=catmap.data.shomate_params,
            hbond_dict=catmap.data.hbond_dict,
            atoms_dict={},
            frequency_dict={},
            force_recalculation=False,
        )
        self._required = {
            'thermodynamic_corrections': list,
            'thermodynamic_variables': list,
        }

        self._zpe_dict = {}
        self._enthalpy_dict = {}
        self._entropy_dict = {}
        self._rxm.update(defaults)
        for corr in self.thermodynamic_corrections:
            self._required[corr + '_thermo_mode'] = str
            self.thermodynamic_variables.append(corr + '_thermo_mode')
Example #7
0
    def __init__(self, reaction_model=ReactionModel()):
        """Class for `parsing' information from raw data 
        (databases, spreadsheets, text files, trajectories, etc.) into a 
        structure which is useful to the microkinetic model. This class acts 
        as a base class to be inherited by other parser classes, but it is 
        not functional on its own.

        input_file: defines the file path or object to get data from

        A functional derived parser class must also contain the methods:

        parse(input_file): a function to parse the input_file file/object and 
        return properly formatted data. The parse function should save all 
        necessary attributes to the Parser class. After parsing the parent 
        microkinetic model class will update itself from the Parser attributes.

        """
        self._rxm = reaction_model
        self._required = {}  #No user-defined attributes are required.
Example #8
0
    def __init__(self, reaction_model=ReactionModel()):
        """Class for `mapping' equilibrium coverages and rates through 
        descriptor space. This class acts as a base class to be inherited 
        by other mapper classes, but is not functional on its own. 

        get_rxn_parameter_map(descriptor_ranges,resolution): Uses a 
            scaler object to determine the reaction parameters as a function of 
            descriptor space. May be useful for debugging or providing 
            intuition about rate determining steps. Should return a list of 
            the form 
        [[descriptor_1,descriptor_2,...],[rxn_parameter1, rxn_parameter2, ...]]

        save_map(map,map_file): creates a pickle of the "map" list and dumps it 
            to the map_file

        load_map(map_file):  loads a "map" list by loading a pickle from 
            the map_file

        A functional derived mapper class must also contain the methods:

        get_coverage_map(descriptor_ranges,resolution): a function which 
            returns a list of the form 
            [[descriptor_1,descriptor_2,...], [cvg_ads1,cvg_ads2,...]]

        get_rates_map(descriptor_ranges,resolution): a function which returns 
            a list of the form 
            [[descriptor_1,descriptor_2,...], [rate_rxn1,rate_rxn2,...]]

        """
        self._rxm = reaction_model
        self._solver_output = [
            'coverage',
            'rate',  #outputs requiring solver
            'turnover_frequency',
            'selectivity',
            'rate_control',
            'noninteracting_coverages'
        ]
Example #9
0
    def __init__(self, reaction_model=ReactionModel()):
        self._rxm = reaction_model
        self._log_strings = {
            'harmonic_transition_state_warning':
            'averaging initial/final state thermal contributions for ${TS}',
            'shomate_warning':
            'temperature below shomate minumum for ${gas};' +
            ' Cp(${T}) and S(${T}) are used below ${T}.'
        }

        #set defaults
        defaults = dict(
            gas_thermo_mode='ideal_gas',
            adsorbate_thermo_mode='harmonic_adsorbate',
            pressure_mode='static',
            thermodynamic_corrections=['gas', 'adsorbate'],
            thermodynamic_variables=['temperature', 'gas_pressures'],
            ideal_gas_params=catmap.data.ideal_gas_params,
            fixed_entropy_dict=catmap.data.fixed_entropy_dict,
            shomate_params=catmap.data.shomate_params,
            atoms_dict={},
            frequency_dict={},
            force_recalculation=False,
        )
        self._required = {
            'thermodynamic_corrections': list,
            'thermodynamic_variables': list,
        }

        self._zpe_dict = {}
        self._enthalpy_dict = {}
        self._entropy_dict = {}
        self._rxm.update(defaults)
        for corr in self.thermodynamic_corrections:
            self._required[corr + '_thermo_mode'] = str
            self.thermodynamic_variables.append(corr + '_thermo_mode')
Example #10
0
def load(setup_file):
    rxm = ReactionModel(setup_file=setup_file)
    return rxm
Example #11
0
    def plot_single(self, mapp, rxn_index, ax=None,
                    overlay_map=None, alpha_range=None,
                    **plot_args):
        """
        :param mapp:

        :param rxn_index: Index for the reaction
        :type rxn_index: int

        :param ax: axes object

        :param overlay_map:
        :type overlay_map: 

        :type alpha_range:
        :type alpha_range:

        .. todo:: __doc__
        """
        if not ax:
            fig = plt.figure()
            ax = fig.add_subplot(111)

        xy, rates = zip(*mapp)
        dim = len(xy[0])
        if dim == 1:
            x = zip(*xy)[0]
            descriptor_ranges = [[min(x), max(x)]]
            if not self.plot_function:
                if self.log_scale == True:
                    self.plot_function = 'semilogy'
                else:
                    self.plot_function = 'plot'
        elif dim == 2:
            x, y = zip(*xy)
            descriptor_ranges = [[min(x), max(x)], [min(y), max(y)]]
            if not self.plot_function:
                self.plot_function = 'contourf'
            if 'cmap' not in plot_args:
                plot_args['cmap'] = self.colormap

        eff_res = self.resolution * self.resolution_enhancement
        if self.min:
            minval = self.min
        else:
            minval = None
        maparray = RM.map_to_array(mapp, descriptor_ranges, eff_res,
                                   log_interpolate=self.log_scale, minval=minval)
        if self.max is None:
            self.max = maparray.T[rxn_index].max()
        if self.min is None:
            self.min = maparray.T[rxn_index].min()

        if dim == 2:
            if maparray.min() <= self.min:
                plot_args['extend'] = 'min'
            if maparray.max() >= self.max:
                plot_args['extend'] = 'max'
            if maparray.max() >= self.max and maparray.min() <= self.min:
                plot_args['extend'] = 'both'
            if 'extend' not in plot_args:
                plot_args['extend'] = 'neither'

        if self.log_scale and dim == 2:
            maparray = np.log10(maparray)
            min_val = np.log10(float(self.min))
            max_val = np.log10(float(self.max))
            if min_val < -200:
                min_val = max(maparray.min(), -200)
            elif max_val == np.inf:
                max_val = min(maparray.max(), 200)
        else:
            min_val = self.min
            max_val = self.max

        maparray = np.clip(maparray, min_val, max_val)

        log_scale = self.log_scale
        if overlay_map:
            overlay_array = RM.map_to_array(overlay_map,
                                            descriptor_ranges, eff_res)
            if alpha_range:
                alpha_min, alpha_max = alpha_range
            else:
                alpha_min = overlay_array.min()
                alpha_max = overlay_array.max()
            overlay_array = (overlay_array - overlay_array.min())
            overlay_array = overlay_array / (alpha_max - alpha_min)
            overlay_array = np.clip(overlay_array, 0, 1)
            maparray = np.clip(maparray, min_val, max_val)
            norm_array = (maparray - maparray.min())
            norm_array = norm_array / (maparray.max() - maparray.min())
            maparray = norm_array * overlay_array
            maparray = (maparray - maparray.min())
            maparray = maparray / (maparray.max() - maparray.min())
            maparray = maparray * (max_val - min_val) + min_val
            maparray = norm_array * overlay_array
            norm_array = (maparray - maparray.min())
            norm_array = norm_array / (maparray.max() - maparray.min())
            maparray = norm_array * (max_val - min_val) + min_val

        if dim == 1:
            x_range = descriptor_ranges[0]
            plot_in = [np.linspace(*x_range + eff_res), maparray[:, rxn_index]]
            plot = getattr(ax, self.plot_function)(*plot_in)
        elif dim == 2:
            x_range, y_range = descriptor_ranges
            z = maparray[:, :, rxn_index]
            if self.log_scale:
                levels = range(int(min_val), int(max_val) + 1)
                if len(levels) < 3 * self.n_ticks:
                    levels = np.linspace(
                        int(min_val), int(max_val), 3 * self.n_ticks)
            else:
                levels = np.linspace(min_val, max_val, min(eff_res, 25))

            plot_in = [np.linspace(*x_range + [eff_res[0]]),
                       np.linspace(*y_range + [eff_res[1]]), z, levels]
            plot = getattr(ax, self.plot_function)(*plot_in, **plot_args)

        pos = ax.get_position()
        if self.aspect:
            ax.set_aspect(self.aspect)
            ax.apply_aspect()

        if dim == 1:
            ax.set_xlim(descriptor_ranges[0])
            ax.set_xlabel(self.descriptor_labels[0])
            ax.set_ylim([float(self.min), float(self.max)])
        elif dim == 2:
            if self.colorbar:
                if log_scale:  # take only integer tick labels
                    cbar_nums = range(int(min_val), int(max_val) + 1)
                    mod = max(int(len(cbar_nums) / self.n_ticks), 1)
                    cbar_nums = [n for i, n in enumerate(cbar_nums) if not i % mod]
                    cbar_nums = np.array(cbar_nums)
                else:
                    cbar_nums = np.linspace(min_val, max_val, self.n_ticks)
                formatstring = '%.' + str(self.axis_label_decimals) + 'g'
                cbar_labels = [formatstring % (s,) for s in cbar_nums]
                cbar_labels = [lab.replace('e-0', 'e-').replace('e+0', 'e')
                               for lab in cbar_labels]
                plot.set_clim(min_val, max_val)
                fig = ax.get_figure()
                axpos = list(ax.get_position().bounds)
                xsize = axpos[2] * 0.04
                ysize = axpos[3]
                xp = axpos[0] + axpos[2] + 0.04 * axpos[2]
                yp = axpos[1]
                cbar_box = [xp, yp, xsize, ysize]
                cbar_ax = fig.add_axes(cbar_box)
                cbar = fig.colorbar(mappable=plot, ticks=cbar_nums,
                                    cax=cbar_ax, extend=plot_args['extend'])
                cbar.ax.set_yticklabels(cbar_labels)
                if getattr(self, 'colorbar_label', None):
                    cbar_kwargs = getattr(self, 'colorbar_label_kwargs', {'rotation': -90})
                    cbar_ax.set_ylabel(self.colorbar_label, **cbar_kwargs)
            if self.descriptor_labels:
                ax.set_xlabel(self.descriptor_labels[0])
                ax.set_ylabel(self.descriptor_labels[1])
            ax.set_xlim(descriptor_ranges[0])
            ax.set_ylim(descriptor_ranges[1])

        if 'title' in plot_args and plot_args['title']:
            if 'title_size' not in plot_args:
                n_pts = self.plot_size * 72
                font_size = min([n_pts / len(plot_args['title']), 14])
            else:
                font_size = plot_args['title_size']
            ax.set_title(plot_args['title'], size=font_size)

        if getattr(self, 'n_xticks', None):
            ax.xaxis.set_major_locator(MaxNLocator(self.n_xticks))
        if getattr(self, 'n_yticks', None):
            ax.yaxis.set_major_locator(MaxNLocator(self.n_yticks))

        self.plot_descriptor_pts(mapp, rxn_index, ax=ax, plot_in=plot_in)
        return ax
Example #12
0
 def setUp(self):
     shutil.copy(os.path.join(ref_dir, 'CO_oxidation.mkm'), '.')
     shutil.copy(os.path.join(ref_dir, 'energies.txt'), '.')
     self.rxn_model = ReactionModel(setup_file='CO_oxidation.mkm')
     self.mechanism = MechanismAnalysis(self.rxn_model)
 def __init__(self, reaction_model=ReactionModel()):
     FirstOrderInteractions.__init__(self, reaction_model)
from glob import glob
import sys
from catmap.model import ReactionModel

output_variable = sys.argv[1]
logfile = glob('*.log')
if len(logfile) > 1:
    raise InputError('Ambiguous logfile. Ensure that only one file ends with .log')
model = ReactionModel(setup_file=logfile[0])

if output_variable == 'rate_control':
    dim = 2
else:
    dim = 1

labels = model.output_labels[output_variable]

def flatten_2d(output):
    "Helper function for flattening rate_control output"
    flat = []
    for x in output:
        flat+= x
    return flat

#flatten rate_control labels
if output_variable == 'rate_control':
    flat_labels = []
    for i in labels[0]:
        for j in labels[1]:
            flat_labels.append('d'+i+'/d'+j)
    labels = flat_labels
    def plot_single(self,
                    mapp,
                    rxn_index,
                    ax=None,
                    overlay_map=None,
                    alpha_range=None,
                    **plot_args):
        """
        :param mapp:

        :param rxn_index: Index for the reaction
        :type rxn_index: int

        :param ax: axes object

        :param overlay_map:
        :type overlay_map:

        :type alpha_range:
        :type alpha_range:

        .. todo:: __doc__
        """
        if not ax:
            fig = plt.figure()
            ax = fig.add_subplot(111)

        xy, rates = zip(*list(mapp))
        dim = len(xy[0])
        if dim == 1:
            x = list(zip(*xy))[0]
            descriptor_ranges = [[min(x), max(x)]]
            if not self.plot_function:
                if self.log_scale == True:
                    self.plot_function = 'semilogy'
                else:
                    self.plot_function = 'plot'
        elif dim == 2:
            x, y = zip(*xy)
            descriptor_ranges = [[min(x), max(x)], [min(y), max(y)]]
            if not self.plot_function:
                self.plot_function = 'contourf'
            if 'cmap' not in plot_args:
                plot_args['cmap'] = self.colormap

        eff_res = self.resolution * self.resolution_enhancement
        if self.min:
            minval = self.min
        else:
            minval = None
        maparray = RM.map_to_array(mapp,
                                   descriptor_ranges,
                                   eff_res,
                                   log_interpolate=self.log_scale,
                                   minval=minval)
        if self.max is None:
            self.max = maparray.T[rxn_index].max()
        if self.min is None:
            self.min = maparray.T[rxn_index].min()

        if dim == 2:
            if maparray.min() <= self.min:
                plot_args['extend'] = 'min'
            if maparray.max() >= self.max:
                plot_args['extend'] = 'max'
            if maparray.max() >= self.max and maparray.min() <= self.min:
                plot_args['extend'] = 'both'
            if 'extend' not in plot_args:
                plot_args['extend'] = 'neither'

        if self.log_scale and dim == 2:
            maparray = np.log10(maparray)
            min_val = np.log10(float(self.min))
            max_val = np.log10(float(self.max))
            if min_val < -200:
                min_val = max(maparray.min(), -200)
            elif max_val == np.inf:
                max_val = min(maparray.max(), 200)
        else:
            min_val = self.min
            max_val = self.max

        maparray = np.clip(maparray, min_val, max_val)

        log_scale = self.log_scale
        if overlay_map:
            overlay_array = RM.map_to_array(overlay_map, descriptor_ranges,
                                            eff_res)
            if alpha_range:
                alpha_min, alpha_max = alpha_range
            else:
                alpha_min = overlay_array.min()
                alpha_max = overlay_array.max()
            overlay_array = (overlay_array - overlay_array.min())
            overlay_array = overlay_array / (alpha_max - alpha_min)
            overlay_array = np.clip(overlay_array, 0, 1)
            maparray = np.clip(maparray, min_val, max_val)
            norm_array = (maparray - maparray.min())
            norm_array = norm_array / (maparray.max() - maparray.min())
            maparray = norm_array * overlay_array
            maparray = (maparray - maparray.min())
            maparray = maparray / (maparray.max() - maparray.min())
            maparray = maparray * (max_val - min_val) + min_val
            maparray = norm_array * overlay_array
            norm_array = (maparray - maparray.min())
            norm_array = norm_array / (maparray.max() - maparray.min())
            maparray = norm_array * (max_val - min_val) + min_val

        if dim == 1:
            x_range = descriptor_ranges[0]
            plot_in = [np.linspace(*x_range + eff_res), maparray[:, rxn_index]]
            plot = getattr(ax, self.plot_function)(*plot_in)
        elif dim == 2:
            x_range, y_range = descriptor_ranges
            z = maparray[:, :, rxn_index]
            if self.log_scale:
                levels = range(int(min_val), int(max_val) + 1)
                if len(levels) < 3 * self.n_ticks:
                    levels = np.linspace(int(min_val), int(max_val),
                                         3 * self.n_ticks)
            else:
                # python 3 cannot do int < list, thus
                # we look at the first element if it is
                # a list.
                levels = np.linspace(
                    min_val, max_val,
                    min(eff_res if type(eff_res) is int else eff_res[0], 25))

            plot_in = [
                np.linspace(*x_range + [eff_res[0]]),
                np.linspace(*y_range + [eff_res[1]]), z, levels
            ]
            plot = getattr(ax, self.plot_function)(*plot_in, **plot_args)

        pos = ax.get_position()
        if self.aspect:
            ax.set_aspect(self.aspect)
            ax.apply_aspect()

        if dim == 1:
            ax.set_xlim(descriptor_ranges[0])
            ax.set_xlabel(self.descriptor_labels[0])
            ax.set_ylim([float(self.min), float(self.max)])
        elif dim == 2:
            if self.colorbar:
                if log_scale:  #take only integer tick labels
                    cbar_nums = range(int(min_val), int(max_val) + 1)
                    mod = max(int(len(cbar_nums) / self.n_ticks), 1)
                    cbar_nums = [
                        n for i, n in enumerate(cbar_nums) if not i % mod
                    ]
                    cbar_nums = np.array(cbar_nums)
                else:
                    cbar_nums = np.linspace(min_val, max_val, self.n_ticks)
                formatstring = '%.' + str(self.axis_label_decimals) + 'g'
                cbar_labels = [formatstring % (s, ) for s in cbar_nums]
                cbar_labels = [
                    lab.replace('e-0', 'e-').replace('e+0', 'e')
                    for lab in cbar_labels
                ]
                plot.set_clim(min_val, max_val)
                fig = ax.get_figure()
                axpos = list(ax.get_position().bounds)
                xsize = axpos[2] * 0.04
                ysize = axpos[3]
                xp = axpos[0] + axpos[2] + 0.04 * axpos[2]
                yp = axpos[1]
                cbar_box = [xp, yp, xsize, ysize]
                cbar_ax = fig.add_axes(cbar_box)
                cbar = fig.colorbar(mappable=plot,
                                    ticks=cbar_nums,
                                    cax=cbar_ax,
                                    extend=plot_args['extend'])
                cbar.ax.set_yticklabels(cbar_labels)
                if getattr(self, 'colorbar_label', None):
                    cbar_kwargs = getattr(self, 'colorbar_label_kwargs',
                                          {'rotation': -90})
                    cbar_ax.set_ylabel(self.colorbar_label, **cbar_kwargs)
            if self.descriptor_labels:
                ax.set_xlabel(self.descriptor_labels[0])
                ax.set_ylabel(self.descriptor_labels[1])
            ax.set_xlim(descriptor_ranges[0])
            ax.set_ylim(descriptor_ranges[1])

        if 'title' in plot_args and plot_args['title']:
            if 'title_size' not in plot_args:
                n_pts = self.plot_size * 72
                font_size = min([n_pts / len(plot_args['title']), 14])
            else:
                font_size = plot_args['title_size']
            ax.set_title(plot_args['title'], size=font_size)

        if getattr(self, 'n_xticks', None):
            ax.xaxis.set_major_locator(MaxNLocator(self.n_xticks))
        if getattr(self, 'n_yticks', None):
            ax.yaxis.set_major_locator(MaxNLocator(self.n_yticks))

        self.plot_descriptor_pts(mapp, rxn_index, ax=ax, plot_in=plot_in)
        return ax
Example #16
0
    input_file = '\n'.join(lines)  #Join the lines with a line break

    input = open(file_name, 'w')  #open the file name in write mode
    input.write(input_file)  #write the text
    input.close()  #close the file

    print 'Successfully created input file'


file_name = 'energies.txt'
make_input_file(file_name, formation_energies, frequency_dict)

#Test that input is parsed correctly
from catmap.model import ReactionModel
from catmap.parsers import TableParser
rxm = ReactionModel()
#The following lines are normally assigned by the setup_file
#and are thus not usually necessary.
rxm.surface_names = ['Rh']
rxm.adsorbate_names = ['CO', 'C', 'O', 'H', 'CH', 'OH', 'CH2', 'CH3']
rxm.transition_state_names = ['C-O', 'H-OH', 'H-C']
rxm.gas_names = ['CO_g', 'H2_g', 'CH4_g', 'H2O_g']
rxm.species_definitions = {'s': {'site_names': ['111']}}
#Now we initialize a parser instance (also normally done by setup_file)
parser = TableParser(rxm)
parser.input_file = file_name
parser.parse()
#All structured data is stored in species_definitions; thus we can
#check that the parsing was successful by ensuring that all the
#data in the input file was collected in this dictionary.
for key in rxm.species_definitions:
Example #17
0
    lines = [header] + lines #add header to top
    input_file = '\n'.join(lines) #Join the lines with a line break

    input = open(file_name,'w') #open the file name in write mode
    input.write(input_file) #write the text
    input.close() #close the file

    print 'Successfully created input file'

file_name = 'energies.txt'
make_input_file(file_name,formation_energies,frequency_dict)

#Test that input is parsed correctly
from catmap.model import ReactionModel
from catmap.parsers import TableParser
rxm = ReactionModel()
#The following lines are normally assigned by the setup_file
#and are thus not usually necessary.
rxm.surface_names = ['Rh']
rxm.adsorbate_names = ['CO','C','O','H','CH','OH','CH2','CH3'] 
rxm.transition_state_names = ['C-O','H-OH','H-C']
rxm.gas_names = ['CO_g','H2_g','CH4_g','H2O_g']
rxm.species_definitions = {'s':{'site_names':['111']}}
#Now we initialize a parser instance (also normally done by setup_file)
parser = TableParser(rxm)
parser.input_file = file_name
parser.parse()
#All structured data is stored in species_definitions; thus we can
#check that the parsing was successful by ensuring that all the
#data in the input file was collected in this dictionary.
for key in rxm.species_definitions: