Example #1
0
    def test_propensity_truncation(self):
        self.ensure_truncation(test_weights=False)

        with self.subTest("Illegal truncation values assertion on compute"):
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.6)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_max=0.4)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.6,
                                                  clip_max=0.9)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.1,
                                                  clip_max=0.4)

        with self.subTest(
                "Illegal truncation values assertion on initialization"):
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.6)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_max=0.4)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.1, clip_max=0.4)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.6, clip_max=0.9)
Example #2
0
def calc_outcome_adaptive_lasso_single_lambda(A, Y, X, Lambda,
                                              gamma_convergence_factor):
    """Calculate ATE with the outcome adaptive lasso"""
    n = A.shape[0]  # number of samples
    # extract gamma according to Lambda and gamma_convergence_factor
    gamma = 2 * (1 + gamma_convergence_factor - log(Lambda, n))
    # fit regression from covariates X and exposure A to outcome Y
    lr = LinearRegression(fit_intercept=True).fit(
        np.hstack([A.values.reshape(-1, 1), X]), Y)
    # extract the coefficients of the covariates
    x_coefs = lr.coef_[1:]
    # calculate outcome adaptive penalization weights
    weights = (np.abs(x_coefs))**(-1 * gamma)
    # apply the penalization to the covariates themselves
    X_w = X / weights
    # fit logistic propensity score model from penalized covariates to the exposure
    ipw = IPW(LogisticRegression(solver='liblinear',
                                 penalty='l1',
                                 C=1 / Lambda),
              use_stabilized=False).fit(X_w, A)
    # compute inverse propensity weighting and calculate ATE
    weights = ipw.compute_weights(X_w, A)
    outcomes = ipw.estimate_population_outcome(X_w, A, Y, w=weights)
    effect = ipw.estimate_effect(outcomes[1], outcomes[0])
    return effect, x_coefs, weights
Example #3
0
def calc_ate_vanilla_ipw(A, Y, X):
    ipw = IPW(LogisticRegression(solver='liblinear',
                                 penalty='l1',
                                 C=1e2,
                                 max_iter=500),
              use_stabilized=True).fit(X, A)
    weights = ipw.compute_weights(X, A)
    outcomes = ipw.estimate_population_outcome(X, A, Y, w=weights)
    effect = ipw.estimate_effect(outcomes[1], outcomes[0])
    return effect[0]
Example #4
0
 def __init__(self,
              prop_score_model=LogisticRegression(),
              trim_weights=False,
              trim_eps=None,
              stabilized=False):
     if trim_weights and trim_eps is None:
         trim_eps = TRIM_EPS
     self.ipw = IPW(learner=prop_score_model,
                    truncate_eps=trim_eps,
                    use_stabilized=stabilized)
     self.w = None
     self.t = None
     self.y = None
Example #5
0
    def setUpClass(cls):
        # Data:
        X, a = make_classification(n_features=1,
                                   n_informative=1,
                                   n_redundant=0,
                                   n_repeated=0,
                                   n_classes=2,
                                   n_clusters_per_class=1,
                                   flip_y=0.0,
                                   class_sep=10.0)
        cls.data_r_100 = {"X": pd.DataFrame(X), "a": pd.Series(a)}
        X, a = make_classification(n_features=1,
                                   n_informative=1,
                                   n_redundant=0,
                                   n_repeated=0,
                                   n_classes=2,
                                   n_clusters_per_class=1,
                                   flip_y=0.2,
                                   class_sep=10.0)
        cls.data_r_80 = {"X": pd.DataFrame(X), "a": pd.Series(a)}

        # Data that maps x=0->a=0 and x=1->a=1:
        X = pd.Series([0] * 50 + [1] * 50)
        cls.data_cat_r_100 = {"X": X.to_frame(), "a": X}

        # Data that maps x=0->a=0 and x=1->a=1, but 10% of x=0->a=1 and 10% of x=1->a=0:
        X = pd.Series([0] * 40 + [1] * 10 + [1] * 40 + [0] * 10).to_frame()
        a = pd.Series([0] * 50 + [1] * 50)
        cls.data_cat_r_80 = {"X": X, "a": a}

        # Avoids regularization of the model:
        cls.estimator = IPW(LogisticRegression(C=1e6, solver='lbfgs'),
                            clip_min=0.05,
                            clip_max=0.95,
                            use_stabilized=False)
Example #6
0
 def setUpClass(cls):
     TestDoublyRobustBase.setUpClass()
     # Avoids regularization of the model:
     ipw = IPW(LogisticRegression(C=1e6, solver='lbfgs'),
               use_stabilized=False)
     std = Standardization(LinearRegression(normalize=True))
     cls.estimator = DoublyRobustIpFeature(std, ipw)
Example #7
0
    def __init__(self,
                 outcome_model=LinearRegression(),
                 prop_score_model=LogisticRegression(),
                 doubly_robust_type='vanilla',
                 standardization_type='standardization',
                 trim_weights=False,
                 trim_eps=None,
                 stabilized=False):

        if doubly_robust_type not in DOUBLY_ROBUST_TYPES:
            raise ValueError(
                'Invalid double_robust_type. Valid types: {}'.format(
                    list(DOUBLY_ROBUST_TYPES)))
        if standardization_type not in STR_TO_STANDARDIZATION.keys():
            raise ValueError(
                'Invalid standardization_type. Valid types: {}'.format(
                    list(STR_TO_STANDARDIZATION.keys())))

        if trim_weights and trim_eps is None:
            trim_eps = TRIM_EPS
        ipw = IPW(learner=prop_score_model,
                  truncate_eps=trim_eps,
                  use_stabilized=stabilized)

        standardization = STR_TO_STANDARDIZATION[standardization_type](
            outcome_model)
        doubly_robust = STR_TO_DOUBLY_ROBUST[doubly_robust_type](
            outcome_model=standardization, weight_model=ipw)

        super().__init__(causallib_estimator=doubly_robust)
Example #8
0
    def test_pipeline_learner(self):
        from sklearn.preprocessing import StandardScaler, MinMaxScaler
        from sklearn.pipeline import make_pipeline
        learner = make_pipeline(StandardScaler(), MinMaxScaler(),
                                LogisticRegression(solver='lbfgs'))
        with self.subTest("Test initialization with pipeline learner"):
            self.estimator = IPW(learner)
            self.assertTrue(True)  # Dummy assert for not thrown exception

        with self.subTest("Test fit with pipeline learner"):
            self.estimator.fit(self.data_r_100["X"], self.data_r_100["a"])
            self.assertTrue(True)  # Dummy assert for not thrown exception

        with self.subTest("Test 'predict' with pipeline learner"):
            self.estimator.compute_weights(self.data_r_100["X"],
                                           self.data_r_100["a"])
            self.assertTrue(True)  # Dummy assert for not thrown exception
Example #9
0
 def setUpClass(self):
     self.data = load_nhefs()
     ipw = IPW(LogisticRegression(solver="liblinear"), truncate_eps=0.05)
     std = StratifiedStandardization(LinearRegression())
     self.dr = DoublyRobustVanilla(std, ipw)
     self.dr.fit(self.data.X, self.data.a, self.data.y)
     self.prp_evaluator = PropensityEvaluator(self.dr.weight_model)
     self.out_evaluator = OutcomeEvaluator(self.dr.outcome_model)
Example #10
0
    def ensure_many_models(self, clip_min=None, clip_max=None):
        from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
        from sklearn.neural_network import MLPRegressor
        from sklearn.linear_model import ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.svm import SVR, LinearSVR

        from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
        from sklearn.neural_network import MLPClassifier
        from sklearn.neighbors import KNeighborsClassifier

        from sklearn.exceptions import ConvergenceWarning
        warnings.filterwarnings('ignore', category=ConvergenceWarning)

        data = self.create_uninformative_ox_dataset()
        for propensity_learner in [
                GradientBoostingClassifier(n_estimators=10),
                RandomForestClassifier(n_estimators=100),
                MLPClassifier(hidden_layer_sizes=(5, )),
                KNeighborsClassifier(n_neighbors=20)
        ]:
            weight_model = IPW(propensity_learner,
                               clip_min=clip_min,
                               clip_max=clip_max)
            propensity_learner_name = str(propensity_learner).split(
                "(", maxsplit=1)[0]
            for outcome_learner in [
                    GradientBoostingRegressor(n_estimators=10),
                    RandomForestRegressor(n_estimators=10),
                    MLPRegressor(hidden_layer_sizes=(5, )),
                    ElasticNet(),
                    RANSACRegressor(),
                    HuberRegressor(),
                    PassiveAggressiveRegressor(),
                    KNeighborsRegressor(),
                    SVR(),
                    LinearSVR()
            ]:
                outcome_learner_name = str(outcome_learner).split(
                    "(", maxsplit=1)[0]
                outcome_model = Standardization(outcome_learner)

                with self.subTest("Test fit & predict using {} & {}".format(
                        propensity_learner_name, outcome_learner_name)):
                    model = self.estimator.__class__(outcome_model,
                                                     weight_model)
                    model.fit(data["X"],
                              data["a"],
                              data["y"],
                              refit_weight_model=False)
                    model.estimate_individual_outcome(data["X"], data["a"])
                    self.assertTrue(True)  # Fit did not crash
Example #11
0
class IPWEstimator(BaseEstimator):
    def __init__(self,
                 prop_score_model=LogisticRegression(),
                 trim_weights=False,
                 trim_eps=None,
                 stabilized=False):
        if trim_weights and trim_eps is None:
            trim_eps = TRIM_EPS
        self.ipw = IPW(learner=prop_score_model,
                       truncate_eps=trim_eps,
                       use_stabilized=stabilized)
        self.w = None
        self.t = None
        self.y = None

    def fit(self, w, t, y):
        w, t, y = to_pandas(w, t, y)
        self.ipw.fit(w, t)
        self.w = w
        self.t = t
        self.y = y

    def estimate_ate(self, t1=1, t0=0, w=None, t=None, y=None):
        w = self.w if w is None else w
        t = self.t if t is None else t
        y = self.y if y is None else y
        if w is None or t is None or y is None:
            raise RuntimeError(
                'Must run .fit(w, t, y) before running .estimate_ate()')
        w, t, y = to_pandas(w, t, y)
        mean_potential_outcomes = self.ipw.estimate_population_outcome(
            w, t, y, treatment_values=[t0, t1])
        ate_estimate = mean_potential_outcomes[1] - mean_potential_outcomes[0]
        # Use below estimate_effect() method if want to allow for effects that are not differences
        # ate_estimate = self.ipw.estimate_effect(mean_potential_outcomes[1], mean_potential_outcomes[0])[0]
        return ate_estimate

    def ate_conf_int(self, percentile=.95) -> tuple:
        raise NotImplementedError
Example #12
0
def test_ipw_matches_causallib(linear_data_pandas):
    w, t, y = linear_data_pandas
    causallib_ipw = IPW(learner=LogisticRegression())
    causallib_ipw.fit(w, t)
    potential_outcomes = causallib_ipw.estimate_population_outcome(
        w, t, y, treatment_values=[0, 1])
    causallib_effect = causallib_ipw.estimate_effect(potential_outcomes[1],
                                                     potential_outcomes[0])[0]

    ipw = IPWEstimator()
    ipw.fit(w, t, y)
    our_effect = ipw.estimate_ate()
    assert our_effect == causallib_effect
Example #13
0
class TestIPW(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        # Data:
        X, a = make_classification(n_features=1,
                                   n_informative=1,
                                   n_redundant=0,
                                   n_repeated=0,
                                   n_classes=2,
                                   n_clusters_per_class=1,
                                   flip_y=0.0,
                                   class_sep=10.0)
        cls.data_r_100 = {"X": pd.DataFrame(X), "a": pd.Series(a)}
        X, a = make_classification(n_features=1,
                                   n_informative=1,
                                   n_redundant=0,
                                   n_repeated=0,
                                   n_classes=2,
                                   n_clusters_per_class=1,
                                   flip_y=0.2,
                                   class_sep=10.0)
        cls.data_r_80 = {"X": pd.DataFrame(X), "a": pd.Series(a)}

        # Data that maps x=0->a=0 and x=1->a=1:
        X = pd.Series([0] * 50 + [1] * 50)
        cls.data_cat_r_100 = {"X": X.to_frame(), "a": X}

        # Data that maps x=0->a=0 and x=1->a=1, but 10% of x=0->a=1 and 10% of x=1->a=0:
        X = pd.Series([0] * 40 + [1] * 10 + [1] * 40 + [0] * 10).to_frame()
        a = pd.Series([0] * 50 + [1] * 50)
        cls.data_cat_r_80 = {"X": X, "a": a}

        # Avoids regularization of the model:
        cls.estimator = IPW(LogisticRegression(C=1e6, solver='lbfgs'),
                            clip_min=0.05,
                            clip_max=0.95,
                            use_stabilized=False)

    def setUp(self):
        self.estimator.fit(self.data_r_100["X"], self.data_r_100["a"])

    def test_is_fitted(self):
        self.assertTrue(hasattr(self.estimator.learner, "coef_"))

    def test_weight_matrix_vector_matching(self):
        a = self.data_r_100["a"]
        p_vec = self.estimator.compute_weights(self.data_r_100["X"], a)
        p_mat = self.estimator.compute_weight_matrix(self.data_r_100["X"], a)
        self.assertEqual(p_vec.size, p_mat.shape[0])
        for i in range(a.shape[0]):
            self.assertAlmostEqual(p_mat.loc[i, a[i]], p_vec[i])

    def test_weight_sizes(self):
        a = self.data_r_100["a"]
        with self.subTest("Weight vector size"):
            p = self.estimator.compute_weights(self.data_r_100["X"], a)
            self.assertEqual(len(p.shape), 1)  # vector has no second axis
            self.assertEqual(p.shape[0], a.shape[0])

        with self.subTest("Weight matrix size"):
            p = self.estimator.compute_weight_matrix(self.data_r_100["X"], a)
            self.assertEqual(len(p.shape), 2)  # Matrix has two dimensions
            self.assertEqual(p.shape[0], a.shape[0])
            self.assertEqual(p.shape[1], np.unique(a).size)

    def ensure_truncation(self, test_weights):
        with self.subTest("Estimator initialization parameters"):
            p = self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"])
            if test_weights:
                p = self.estimator.compute_weights(self.data_r_80["X"],
                                                   self.data_r_80["a"]).pow(-1)

            self.assertAlmostEqual(p.min(), 0.05)
            self.assertAlmostEqual(p.max(), 1 - 0.05)

        with self.subTest("Overwrite parameters in compute_weights"):
            p = self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.1,
                                                  clip_max=0.9)
            if test_weights:
                p = self.estimator.compute_weights(self.data_r_80["X"],
                                                   self.data_r_80["a"],
                                                   clip_min=0.1,
                                                   clip_max=0.9).pow(-1)
            self.assertAlmostEqual(p.min(), 0.1)
            self.assertAlmostEqual(p.max(), 1 - 0.1)

        with self.subTest("Test asymmetric clipping"):
            p = self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.2,
                                                  clip_max=0.9)
            if test_weights:
                p = self.estimator.compute_weights(self.data_r_80["X"],
                                                   self.data_r_80["a"],
                                                   clip_min=0.2,
                                                   clip_max=0.9).pow(-1)
            self.assertAlmostEqual(p.min(), 0.2)
            self.assertAlmostEqual(p.max(), 0.9)

        with self.subTest(
                "Test calculation of fraction of clipped observations"):
            probabilities = pd.DataFrame()
            probabilities['col1'] = [
                0.01, 0.02, 0.03, 0.05, 0.3, 0.6, 0.9, 0.95, 0.99, 0.99
            ]
            probabilities['col2'] = [
                0.99, 0.98, 0.97, 0.95, 0.7, 0.4, 0.1, 0.05, 0.01, 0.01
            ]
            frac = self.estimator._IPW__count_truncated(probabilities,
                                                        clip_min=0.05,
                                                        clip_max=0.95)
            self.assertAlmostEqual(frac, 0.5)

        with self.subTest(
                "Test calculation of fraction of clipped observations - no clipping"
        ):
            probabilities = pd.DataFrame()
            probabilities['col1'] = [0.0, 0.0, 0.0, 1.0, 1.0]
            probabilities['col2'] = [1.0, 1.0, 1.0, 0.0, 0.0]
            frac = self.estimator._IPW__count_truncated(probabilities,
                                                        clip_min=0.0,
                                                        clip_max=1.0)
            self.assertAlmostEqual(frac, 0.0)

    def test_weight_truncation(self):
        self.ensure_truncation(test_weights=True)

    def test_propensity_truncation(self):
        self.ensure_truncation(test_weights=False)

        with self.subTest("Illegal truncation values assertion on compute"):
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.6)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_max=0.4)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.6,
                                                  clip_max=0.9)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.1,
                                                  clip_max=0.4)

        with self.subTest(
                "Illegal truncation values assertion on initialization"):
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.6)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_max=0.4)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.1, clip_max=0.4)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.6, clip_max=0.9)

    def test_weights_sanity_check(self):
        with self.subTest(
                "Linearly separable X should have perfectly predicted propensity score"
        ):
            p = self.estimator.compute_weights(self.data_r_100["X"],
                                               self.data_r_100["a"],
                                               clip_min=0.0,
                                               clip_max=1.0).pow(-1)
            np.testing.assert_array_almost_equal(p, np.ones_like(p), decimal=3)

        with self.subTest(
                "Train on bijection X|a data and predict on data where q% are flipped"
        ):
            # Train on data that maps x=0->a=0 and x=1->a=1:
            self.estimator.fit(self.data_cat_r_100["X"],
                               self.data_cat_r_100["a"])
            # Predict on a set with mis-mapping: 10% of x=0 have a=1 and 10% of x=1 have a=0:
            p = self.estimator.compute_weights(self.data_cat_r_80["X"],
                                               self.data_cat_r_80["a"],
                                               clip_min=0.0,
                                               clip_max=1.0).pow(-1)
            # Extract subjects with mismatching X-a values:
            mis_assigned = np.logical_xor(self.data_cat_r_80["X"].iloc[:, 0],
                                          self.data_cat_r_80["a"])
            # See they have the same rate:
            self.assertAlmostEqual(p.mean(), 1.0 - mis_assigned.mean(), 4)
            np.testing.assert_almost_equal(p.mean(),
                                           1.0 - mis_assigned.mean(),
                                           decimal=4)

    def test_forcing_probability_learner(self):
        from sklearn.svm import SVC  # Arbitrary model with decision_function instead of predict_proba
        with self.assertRaises(AttributeError):
            IPW(SVC())

    def test_pipeline_learner(self):
        from sklearn.preprocessing import StandardScaler, MinMaxScaler
        from sklearn.pipeline import make_pipeline
        learner = make_pipeline(StandardScaler(), MinMaxScaler(),
                                LogisticRegression(solver='lbfgs'))
        with self.subTest("Test initialization with pipeline learner"):
            self.estimator = IPW(learner)
            self.assertTrue(True)  # Dummy assert for not thrown exception

        with self.subTest("Test fit with pipeline learner"):
            self.estimator.fit(self.data_r_100["X"], self.data_r_100["a"])
            self.assertTrue(True)  # Dummy assert for not thrown exception

        with self.subTest("Test 'predict' with pipeline learner"):
            self.estimator.compute_weights(self.data_r_100["X"],
                                           self.data_r_100["a"])
            self.assertTrue(True)  # Dummy assert for not thrown exception
Example #14
0
 def test_forcing_probability_learner(self):
     from sklearn.svm import SVC  # Arbitrary model with decision_function instead of predict_proba
     with self.assertRaises(AttributeError):
         IPW(SVC())
Example #15
0
    def test_many_models(self):
        from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
        from sklearn.neural_network import MLPRegressor
        from sklearn.linear_model import ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.svm import SVR, LinearSVR

        from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
        from sklearn.neural_network import MLPClassifier
        from sklearn.neighbors import KNeighborsClassifier

        from sklearn.exceptions import ConvergenceWarning
        warnings.filterwarnings('ignore', category=ConvergenceWarning)

        data = self.create_uninformative_ox_dataset()

        for propensity_learner in [
                GradientBoostingClassifier(n_estimators=10),
                RandomForestClassifier(n_estimators=100),
                MLPClassifier(hidden_layer_sizes=(5, )),
                KNeighborsClassifier(n_neighbors=20)
        ]:
            weight_model = IPW(propensity_learner)
            propensity_learner_name = str(propensity_learner).split(
                "(", maxsplit=1)[0]
            for outcome_learner in [
                    GradientBoostingRegressor(n_estimators=10),
                    RandomForestRegressor(n_estimators=10),
                    RANSACRegressor(),
                    HuberRegressor(),
                    SVR(),
                    LinearSVR()
            ]:
                outcome_learner_name = str(outcome_learner).split(
                    "(", maxsplit=1)[0]
                outcome_model = Standardization(outcome_learner)

                with self.subTest("Test fit using {} & {}".format(
                        propensity_learner_name, outcome_learner_name)):
                    model = self.estimator.__class__(outcome_model,
                                                     weight_model)
                    model.fit(data["X"],
                              data["a"],
                              data["y"],
                              refit_weight_model=False)
                    self.assertTrue(True)  # Fit did not crash

            for outcome_learner in [
                    MLPRegressor(hidden_layer_sizes=(5, )),
                    # ElasticNet(),  # supports sample_weights since v0.23, remove to support v<0.23
                    PassiveAggressiveRegressor(),
                    KNeighborsRegressor()
            ]:
                outcome_learner_name = str(outcome_learner).split(
                    "(", maxsplit=1)[0]
                outcome_model = Standardization(outcome_learner)

                with self.subTest("Test fit using {} & {}".format(
                        propensity_learner_name, outcome_learner_name)):
                    model = self.estimator.__class__(outcome_model,
                                                     weight_model)
                    with self.assertRaises(TypeError):
                        # Joffe forces learning with sample_weights,
                        # not all ML models support that and so calling should fail
                        model.fit(data["X"],
                                  data["a"],
                                  data["y"],
                                  refit_weight_model=False)
Example #16
0
 def init(self, reduced, importance_sampling):
     self._estimator = TMLE(
         Standardization(self.outcome_model_cont),
         IPW(self.treatment_model),
         reduced=reduced, importance_sampling=importance_sampling,
     )