def test_get_synthetic_auuc(): preds_dict = get_synthetic_preds(synthetic_data_func=simulate_nuisance_and_easy_treatment, n=1000, estimators={'S Learner (LR)': LRSRegressor(), 'T Learner (XGB)': XGBTRegressor()}) auuc_df = get_synthetic_auuc(preds_dict, plot=False) print(auuc_df)
def test_get_synthetic_preds(synthetic_data_func): preds_dict = get_synthetic_preds(synthetic_data_func=synthetic_data_func, n=1000, estimators={ 'S Learner (LR)': LRSRegressor(), 'T Learner (XGB)': XGBTRegressor() }) assert preds_dict['S Learner (LR)'].shape[0] == preds_dict[ 'T Learner (XGB)'].shape[0]
def test_get_synthetic_preds(): preds_dict = get_synthetic_preds( synthetic_data_func=simulate_nuisance_and_easy_treatment, n=1000, estimators={ 'S Learner (LR)': LRSRegressor(), 'T Learner (XGB)': XGBTRegressor() }) assert preds_dict['S Learner (LR)'].shape[0] == preds_dict[ 'T Learner (XGB)'].shape[0]
def test_get_synthetic_preds(synthetic_data_func): preds_dict = get_synthetic_preds( synthetic_data_func=synthetic_data_func, n=1000, estimators={ "S Learner (LR)": LRSRegressor(), "T Learner (XGB)": XGBTRegressor(), }, ) assert ( preds_dict["S Learner (LR)"].shape[0] == preds_dict["T Learner (XGB)"].shape[0] )