def _get_cmd(self, protein, cavity_origin, out=None):
        """
        private method

        constructs the commandline str required to run atomic hotspot calculation
        :param str jobname: general format (<probe_type>.ins)
        :param str probename: probe identifier
        :param str out: output directory (outputting ins maybe useful for debugging)
        :return:
        """
        cmds = []
        if not out:
            out = self.settings.temp_dir

        with PushDir(out):
            with MoleculeWriter(join(out, 'protein.mol2')) as writer:
                writer.write(protein)

        for jobname, probename in self.settings.atomic_probes.items():
            instruction = self.InstructionFile(jobname=jobname,
                                               probename=probename,
                                               settings=self.settings,
                                               cavity=cavity_origin)

            cmds.append('{}'.format(self.settings.superstar_executable) + ' ' +
                        '{}.ins'.format(jobname))

            with PushDir(out):
                instruction.write("{}.ins".format(jobname))
        return cmds
Example #2
0
    def testdetect_from_ligand(self):
        wrkdir = "testdata/pharmacophore_extension/LigandPharmacophoreModel/from_ligand"
        with PushDir(wrkdir):
            self.ligand_pharmacophore.feature_definitions = ["acceptor"]
            print(self.ligand_pharmacophore.feature_definitions["acceptor"].
                  point_generator_names)
            self.ligand_pharmacophore.detect_from_ligand(ligand=self.crystal)
            self.assertEqual(5,
                             len(self.ligand_pharmacophore.detected_features))
            # test score setter
            self.assertEqual(
                0, self.ligand_pharmacophore.detected_features[0].score)
            self.ligand_pharmacophore.detected_features[0].score = 5
            self.assertEqual(
                5, self.ligand_pharmacophore.detected_features[0].score)

            # test write
            for f in self.ligand_pharmacophore.detected_features:
                self.ligand_pharmacophore.add_feature(f)

            self.ligand_pharmacophore.write(
                pharmacophore_path="pharmacophore.cm")

            read_me = LigandPharmacophoreModel.from_file("pharmacophore.cm")

            self.assertEqual(len(self.ligand_pharmacophore.features),
                             len(read_me.features))

            print(read_me.features[0].spheres[0].centre)
Example #3
0
    def test_docking_constraint_atoms(self):
        with PushDir("testdata/result/data"):
            # read hotspot maps
            with HotspotReader(path="out.zip") as r:
                self.result = r.read()

            print(self.result._docking_constraint_atoms())
Example #4
0
    def _generate_result(self, path):
        with PushDir(path):
            files = set(listdir(path))

            # fetch protein - this should always be protein.pdb
            prot_name = [f for f in files if f.split(".")[1] == self.supported_protein_extensions][0]
            prot = Protein.from_file(prot_name)
            files.remove(prot_name)

            # there should only be one grid extension in the directory, if there are more
            # then you can manually read in your results
            grid_extension = {f.split(".")[1] for f in files}.intersection(self.supported_grid_extensions)
            if len(grid_extension) > 1:
                raise IndexError("Too many grid types, create `hotspots.result.Results` manually")

            elif len(grid_extension) < 1:
                raise IndexError("No supported grid types found")

            elif list(grid_extension)[0] == "dat":
                raise NotImplementedError("Will put this in if requested")

            else:
                grid_extension = list(grid_extension)[0]

            # read hotspot grids
            stripped_files = {f.split(".")[0] for f in files}
            hotspot_grids = stripped_files.intersection(self.supported_interactions)
            super_grids = {p: Grid.from_file(f"{p}.{grid_extension}") for p in hotspot_grids}

            # read superstar grids
            if len([f.startswith("superstar") for f in files]) > 0 and self.read_superstar:
                superstar_grids = {p: Grid.from_file(f"superstar_{p}.{grid_extension}") for p in hotspot_grids}
            else:
                superstar_grids = None

            # read weighted_superstar grids
            if len([f.startswith("weighted") for f in files]) > 0 and self.read_weighted:
                weighted_grids = {p: Grid.from_file(f"weighted_{p}.{grid_extension}") for p in hotspot_grids}
            else:
                weighted_grids = None

            # fetch buriedness grid
            try:
                buriedness_name = [f for f in files if f.startswith("buriedness")][0]
            except IndexError:
                buriedness_name = None

            if buriedness_name and self.read_buriedness:
                buriedness = Grid.from_file(buriedness_name)
            else:
                buriedness = None

        return Results(super_grids=super_grids,
                       protein=prot,
                       buriedness=buriedness,
                       superstar=superstar_grids,
                       weighted_superstar=weighted_grids,
                       identifier=basename(path))
Example #5
0
def run():
    # must be abspath
    parent = sys.argv[1]
    score = sys.argv[2]
    autoscale = sys.argv[3]
    run_id = sys.argv[4]
    crossminer_file = os.path.join(parent, sys.argv[5])

    # data
    conf_name = "hs_gold.conf"
    out_path = check_dir(os.path.join(parent, "gold_results"))
    out_path = check_dir(os.path.join(out_path, run_id))
    junk = check_dir(os.path.join(out_path, "all"))
    hotspot = os.path.join(parent, "hotspot_pharmacophore", "out.zip")
    crystal_ligand = os.path.join(parent, "crystal_ligand.mol2")
    actives = os.path.join(parent, "actives_final.mol2")
    decoys = os.path.join(parent, "decoys_final.mol2")
    prot_file = os.path.join(out_path, "protein.mol2")

    # output protein
    with hs_io.HotspotReader(hotspot) as reader:
        hr = [h for h in reader.read() if h.identifier == "bestvol"][0]

    with MoleculeWriter(prot_file) as w:
        w.write(hr.protein)

    hspm = HotspotPharmacophoreModel.from_file(crossminer_file)
    constraint_str = hspm.to_gold_conf(score=score)

    # create template
    gold_conf_str = template(autoscale, crystal_ligand, actives, decoys, junk,
                             prot_file, constraint_str)
    print(gold_conf_str)
    with open(os.path.join(out_path, conf_name), "w") as w:
        w.write(gold_conf_str)

    #  linux only
    gold_exe = os.path.join(os.environ["GOLD_DIR"], "bin/gold_auto")

    # run docking
    with PushDir(out_path):
        cmd = f"{gold_exe} {conf_name}"
        os.system(cmd)

    # process results
    docked = MoleculeReader(os.path.join(junk, "docked_ligands.mol2"))
    # make it consistent with other names
    with MoleculeWriter(os.path.join(out_path, "docked_ligand.mol2")) as w:
        for d in docked:
            for atm in d.atoms:
                if atm.atomic_symbol == "Unknown":
                    d.remove_atom(atm)
            w.write(d)

    shutil.copyfile(os.path.join(junk, "bestranking.lst"),
                    os.path.join(out_path, "bestranking.lst"))
Example #6
0
    def test_docking_fitting_pts(self):
        with PushDir("testdata/2vta"):
            # read hotspot maps
            with HotspotReader(path="out.zip") as r:
                self.result = r.read()

            mol = [
                m for m in MoleculeReader("crystal_ligand.sdf")
                if "LZ1" in m.identifier.split("_")
            ][0]
            print(mol.identifier)
            m = self.result._docking_fitting_pts(mol)
Example #7
0
    def testdetect_from_ligand_ensemble(self):
        wrk_dir = "testdata/pharmacophore_extension/LigandPharmacophoreModel/from_ligand_ensemble"
        with PushDir(wrk_dir):
            test_overlay = io.MoleculeReader("test_overlay.mol2")
            ligand_pharmacophore = LigandPharmacophoreModel()
            ligand_pharmacophore.feature_definitions = [
                "ring_planar_projected"
            ]

            ligand_pharmacophore.detect_from_ligand_ensemble(
                ligands=test_overlay, cutoff=2)
            # ligand_pharmacophore.pymol_visulisation(outdir="")

            self.assertEqual(2, len(ligand_pharmacophore.detected_features))
def create_pharmacophore(path, hetid, chain, out_dir):
    with PushDir(out_dir):
        ipm = InteractionPharmacophoreModel()
        ipm.feature_definitions = [
            "donor_projected", "donor_ch_projected", "acceptor_projected",
            "ring_planar_projected"
        ]

        ipm.detect_from_arpeggio(path, hetid, chain)

        for feat in ipm.detected_features:
            ipm.add_feature(feat)

        ipm.write(f"{path.split('_')[0]}_{hetid}.cm")
def _run_job(args):
    """
    private method

    Runs an Atomic Hotspot calculation using the SuperStar algorithm.
    :param tup or list args: Command, Jobname, SuperStar Environment Variable and Temporary directory
    :return: tup, temporary directory and jobname
    """
    cmd, jobname, superstar_env, temp_dir = args
    print(temp_dir)
    env = environ.copy()
    env.update(superstar_env)
    with PushDir(temp_dir):
        subprocess.call(cmd, shell=sys.platform != 'win32', env=env)
    return temp_dir, jobname
Example #10
0
    def testdetect_from_ligand_ensemble_cdk2(self):
        wrk_dir = "testdata/pharmacophore_extension/LigandPharmacophoreModel/from_ligand_ensemble_big_all"
        with PushDir(wrk_dir):
            test_overlay = io.MoleculeReader("cdk2_ligands.mol2")
            ligand_pharmacophore = LigandPharmacophoreModel()
            ligand_pharmacophore.feature_definitions = [
                "ring_planar_projected", "donor_projected",
                "acceptor_projected"
            ]

            ligand_pharmacophore.detect_from_ligand_ensemble(
                ligands=test_overlay, cutoff=2)

            feature_count = 4
            selected = ligand_pharmacophore.top_features(num=feature_count)
            ligand_pharmacophore.detected_features = selected

            self.assertEqual(feature_count, len(ligand_pharmacophore))
Example #11
0
    def run(self, protein, grid_spacing=0.5):
        """
        executes the command line call

        NB: different versions of ghecom have different commandline args

        :param protein: protein
        :param grid_spacing: grid spacing, must be the same used in hotspot calculation

        :type protein: `ccdc.protein.Protein`
        :type grid_spacing: float
        """
        with PushDir(self.temp):
            with io.MoleculeWriter('protein.pdb') as writer:
                writer.write(protein)

                cmd = f"{os.environ['GHECOM_EXE']} -ipdb {self.input} -M M -gw {grid_spacing} -rli 2.5 -rlx 9.5 -opocpdb {self.output}"
                os.system(cmd)

        return os.path.join(self.temp, self.output)
Example #12
0
    def calculate(self):
        """
        runs the buriedness calculation

        :return: `hotspots.calculation._BuriednessResult`: a class with a :class:`ccdc.utilities.Grid` attribute
        """

        with PushDir(self.settings.working_directory):
            if self.settings.protein is not None:
                with MoleculeWriter('protein.pdb') as writer:
                    writer.write(self.settings.protein)

            cmd = "{} {} -M {} -gw {} -rli {} -rlx {} -opoc {}".format(
                environ['GHECOM_EXE'], self.settings.in_name,
                self.settings.mode, self.settings.grid_spacing,
                self.settings.radius_min_large_sphere,
                self.settings.radius_max_large_sphere, self.settings.out_name)

            system(cmd)

        return _BuriednessResult(self.settings)
Example #13
0
    def testscore_atoms_as_spheres(self):
        with PushDir("testdata/result/data"):
            mols = [m for m in MoleculeReader("gold_docking_poses.sdf")]

            # create a grid which can contain all docking poses
            small_blank = Grid.initalise_grid(coords={
                atm.coordinates
                for mol in mols for atm in mol.heavy_atoms
            },
                                              padding=2)

            # read hotspot maps
            with HotspotReader(path="out.zip") as r:
                self.result = r.read()

            # dilate the grids
            for p, g in self.result.super_grids.items():
                self.result.super_grids[p] = g.dilate_by_atom()

            # shrink hotspot maps to save time
            sub_grids = {
                p: Grid.shrink(small=small_blank, big=g)
                for p, g in self.result.super_grids.items()
            }

            # create single grid
            mask_dic, sg = Grid.get_single_grid(sub_grids)

            self.result.super_grids = mask_dic

            # set background to 1
            self.result.set_background()
            self.result.normalize_to_max()

            print([g.extrema for p, g in self.result.super_grids.items()])

            for m in mols[:1]:
                s = self.result.score_atoms_as_spheres(m, small_blank)
                print(s)
Example #14
0
    def testdetect_from_pl_ensemble(self):
        wrkdir = "/home/pcurran/github_packages/pharmacophores/testdata/alignment"
        with PushDir(wrkdir):
            paths = [
                "1AQ1_aligned.pdb", "1B38_aligned.pdb", "1B39_aligned.pdb",
                "1CKP_aligned.pdb"
            ]
            hetids = ["STU", "ATP", "ATP", "PVB"]
            chains = ["A", "A", "A", "A"]

            for i in range(len(paths)):
                ipm = InteractionPharmacophoreModel()
                ipm.feature_definitions = [
                    "donor_projected", "donor_ch_projected",
                    "acceptor_projected", "ring_planar_projected"
                ]

                ipm.detect_from_arpeggio(paths[i], hetids[i], chains[i])

                for feat in ipm.detected_features:
                    ipm.add_feature(feat)

                ipm.write(f"{paths[i].split('_')[0]}_{hetids[i]}.cm")