Example #1
0
    def process_frames(self, data):
        sino = data[0]
        cors, angles, vol_shape, init = self.get_frame_params()

        voxels = ccpi_alg.cgls(sino.astype(np.float32),
                               angles.astype(np.float32), cors[0], self.res,
                               self.n_iters, 1, self.parameters['log'])

        # need to get left and right shift and crop
        pad_start, pad_end = self.array_pad(cors[0], self.width)
        return np.transpose(voxels[pad_start:pad_end, pad_start:pad_end, :],
                            (0, 2, 1))
    def process_frames(self, data):
        sino = data[0]
        cors, angles, vol_shape, init = self.get_frame_params()

        voxels = ccpi_alg.cgls(sino.astype(np.float32),
                               angles.astype(np.float32), cors[0],
                               self.res, self.n_iters, 1,
                               self.parameters['log'])

        # need to get left and right shift and crop
        pad_start, pad_end = self.array_pad(cors[0], self.width)
        return np.transpose(voxels[pad_start:pad_end, pad_start:pad_end, :], (0, 2, 1))
Example #3
0
import numpy as np
import h5py
from ccpi.reconstruction.parallelbeam import alg as ccpi_reconstruction
angles = np.load('angles.npy')
sino = np.load('sino.npy')
sino = sino.astype(np.float32)
angles = angles.astype(np.float32)
voxels = ccpi_reconstruction.cgls(sino, angles, np.double(0.0), 1, 5, 1, False)
#output = h5py.File('output.h5','w')
#odata = output.create_dataset("default", data=voxels)
#output.close()
#output = h5py.File('input.h5','w')
#odata = output.create_dataset("default", data=sino)
#output.close()
Example #4
0
## Data can now be passed to the reconstruction algorithms:
## CGLS, MLEM, SIRT, CGLS_CONV, CGLS_TIKHONOV, CGLS_TVregularization

#center of rotation
center_of_rotation = numpy.double(86.2)
#resolution
resolution = 1
# number of iterations
niterations = 10
# number of threads
threads = 4
#data are in log scale?
isPixelDataInLogScale = False

# CGLS
img_cgls = alg.cgls(norm, angle_proj, center_of_rotation, resolution,
                    niterations, threads, isPixelDataInLogScale)

#img_cgls = numpy.transpose(img_cgls, axes=[0,2,1])
# check if padded
shape = numpy.shape(img_cgls)
img_cgls = img_cgls[:, :shape[1] - 1, :]
#counter = shape[2] - 1
#while True:
#	if numpy.all(img_cgls[:,:,counter] == 0):
#		counter = counter -1
#	else:
#		break
#
#if counter < shape[2] - 1:
#	img_cgls = img_cgls[:,:,:counter]
cor = 175.75
############################################################
#recon.pars['algorithm'] = Reconstructor.Algorithm.CGLS_CONV
#recon.pars['regularize'] = numpy.double(0.1)
#img_cgls_conv = recon.reconstruct()

niterations = 15
threads = 4

data = (norm.T).copy()
del norm
del reader
norm = data

print ("Launching CGLS")
img_cgls = alg.cgls(norm, angle_proj, numpy.double(cor), 1 , niterations, threads, False)
numpy.save("chadwick_chamber.npy", img_cgls)
print ("CGLS finished")

v = CILViewer2D()
v.setInputAsNumpy(img_cgls)
v.startRenderLoop()
##img_mlem = alg.mlem(norm, angle_proj, numpy.double(cor), 1 , niterations, threads, False)
##img_sirt = alg.sirt(norm, angle_proj, numpy.double(cor), 1 , niterations, threads, False)
##
##iteration_values = numpy.zeros((niterations,))
##img_cgls_conv = alg.cgls_conv(norm, angle_proj, numpy.double(cor), 1 , niterations, threads,
##                              iteration_values, False)
##print ("iteration values %s" % str(iteration_values))
##
##iteration_values = numpy.zeros((niterations,))
Example #6
0
# CGLS
niterations = 10
threads = 4
isPixelDataInLogScale = False
m = stack.min()
M = stack.max()
scale = 1 / (M - m)
shift = -m + 1e-2
norm = stack * scale + shift
# absorption is from 0 to 1 where 0 is max density
norm = 0.99 - norm
norm = numpy.transpose(norm, axes=[0, 2, 1]).copy()


img_cgls = alg.cgls(norm, angles, center_of_rotation , \
   pixel_per_voxel ,  niterations, threads, isPixelDataInLogScale)

cols = 4
rows = 1
current = 1
fig = plt.figure()
a = fig.add_subplot(rows, cols, current)
a.set_title('volume')
imgplot = plt.imshow(phantom[64])

current = current + 1
a = fig.add_subplot(rows, cols, current)
a.set_title('stack')
imgplot = plt.imshow(stack[20])

current = current + 1