def test_equivalence_diff_3(self): norm = 3 bg, var = stats(self.test_data1) data = multitau.acorr_multi(self.test_data1, level_size=16, norm=1, method="corr", binning=0) data = multitau.normalize_multi(data, bg, var, norm=1) x_, out0 = multitau.log_merge(*data) data = multitau.ccorr_multi(self.test_data1, self.test_data1, level_size=16, norm=norm, method="diff", binning=0) data = multitau.normalize_multi(data, bg, var, norm=norm) x_, out = multitau.log_merge(*data) self.assertTrue(np.allclose(out0, out)) data, bg, var = multitau.iacorr_multi(fromarrays((self.test_data1, )), count=64, level_size=16, norm=1, method="diff", binning=0) data = multitau.normalize_multi(data, bg, var, norm=1) x_, out = multitau.log_merge(*data) self.assertTrue(np.allclose(out0, out))
def test_equivalence_norm_2(self): norm = 2 bg, var = stats(self.test_data1) data= multitau.acorr_multi(self.test_data1, level_size = 16, norm = norm) data = multitau.normalize_multi(data,bg,var, norm = norm) x_, out0 = multitau.log_merge(*data) data = multitau.ccorr_multi(self.test_data1,self.test_data1, level_size = 16, norm = norm) data = multitau.normalize_multi(data,bg,var, norm = norm) x_, out = multitau.log_merge(*data) self.assertTrue(np.allclose(out0,out)) data,bg,var = multitau.iacorr_multi(fromarrays((self.test_data1,)),count = 64, level_size = 16, norm = norm) data = multitau.normalize_multi(data,bg,var, norm = norm) x_, out = multitau.log_merge(*data) self.assertTrue(np.allclose(out0,out))