def test_DER(self): g = get_string_graph() coms = algorithms.der(g) self.assertEqual(type(coms.communities), list) if len(coms.communities) > 0: self.assertEqual(type(coms.communities[0]), list) self.assertEqual(type(coms.communities[0][0]), str)
fields = line.strip("\n").split("\t") if (options.bipartite): g.add_node(fields[0], bipartite=0) g.add_node(fields[1], bipartite=1) g.add_edge(fields[0], fields[1], weight=float(fields[2])) print(g.number_of_nodes()) print(g.number_of_edges()) if (options.method == 'leiden'): communities = algorithms.leiden(g, weights='weight', **clust_kwargs) elif (options.method == 'louvain'): communities = algorithms.louvain(g, weight='weight', **clust_kwargs) elif (options.method == 'cpm'): communities = algorithms.cpm(g, weights='weight', **clust_kwargs) elif (options.method == 'der'): communities = algorithms.der(g, **clust_kwargs) elif (options.method == 'edmot'): communities = algorithms.edmot(g, **clust_kwargs) elif (options.method == 'eigenvector'): communities = algorithms.eigenvector(g, **clust_kwargs) elif (options.method == 'gdmp2'): communities = algorithms.gdmp2(g, **clust_kwargs) elif (options.method == 'greedy_modularity'): communities = algorithms.greedy_modularity(g, weight='weight', **clust_kwargs) #elif(options.method == 'infomap'): # communities = algorithms.infomap(g) elif (options.method == 'label_propagation'): communities = algorithms.label_propagation(g, **clust_kwargs) elif (options.method == 'markov_clustering'):