def test_gn(self):
     g = get_string_graph()
     coms = algorithms.girvan_newman(g, 3)
     self.assertEqual(type(coms.communities), list)
     if len(coms.communities) > 0:
         self.assertEqual(type(coms.communities[0]), list)
         self.assertEqual(type(coms.communities[0][0]), str)
 def girvan_newman(self):
     template = pd.read_csv("data/communities_template.node", " ", header='infer')
     saveTo = "Results/Communities/" + self.name + "_girvannewman_communities.node"
     G = nx.Graph(self.g)
     result = algorithms.girvan_newman(G, level=3)
     modularity = result.newman_girvan_modularity().score
     significance = result.significance().score
     communities = result.to_node_community_map()
     n_communities = list(communities.values())[-1][0] + 1
     print("\nGirvan Newman: ")
     print("#Communities: ", n_communities)
     print("Modularity: ", modularity)
     print("Significance: ", significance)
     e = self.get_ordered_communities(communities)
     template['Girvan-Newman'] = e
     print("\n")
     template['Degree'] = [v for v in self.centrality]
     template['RegionName'] = self.region_names
     pd.DataFrame.to_csv(template, saveTo, " ", header=False, index=False)
     return e
Example #3
0
 def gn(n_coms) : return lambda G : algorithms.girvan_newman(G, n_coms)
 algos['gn'] = [gn(len(c)) for c in lfr_comms] 
Example #4
0
                                      cs.erdos_renyi_modularity().score))
    print("{0:>15s} | {1:.6f}".format(
        'Robustness',
        cs.normalized_mutual_information(alg(G)).score))
    print("{0:>15s} | {1:.1f} sec\n".format('Timing', time() - tic))
    return cs


# G = read('toy')
G = read('karate')
# G = read('women')
# G = read('dolphins')
# G = read('got-appearance')
# G = read('diseasome')
# G = read('wars')
# G = read('transport')
# G = read('java')
# G = read('imdb')
# G = read('wikileaks')

info(G)

clusters(G, lambda G: algorithms.girvan_newman(G, level=1))
clusters(G, lambda G: algorithms.label_propagation(G))
cs = clusters(G, lambda G: algorithms.louvain(G))
# clusters(G, lambda G: algorithms.leiden(G))
# clusters(G, lambda G: algorithms.sbm_dl(G))

viz.plot_network_clusters(G, cs, nx.spring_layout(G))
plt.show()