if args.pool: args.ablation = True ablations = None basenames_to_pool = None exps_outdirs = [] for path in args.config_paths: p = Config(path) models = filter_models(p.model_list, args.models) cdr_models = [ x for x in models if (x.startswith('CDR') or x.startswith('DTSR')) ] partitions = get_partition_list(args.partition) partition_str = '-'.join(partitions) if args.metric == 'loss': file_name = 'losses_mse_%s.txt' % partition_str else: file_name = 'loglik_%s.txt' % partition_str if args.twostep: file_name = 'LM_2STEP_' + file_name if args.ablation: comparison_sets = {} for model_name in cdr_models: model_basename = model_name.split('!')[0] if model_basename not in comparison_sets: comparison_sets[model_basename] = []
cdr_models = [m for m in models if (m.startswith('CDR') or m.startswith('DTSR'))] if not args.ablated_models: cdr_models_new = [] for model_name in cdr_models: if len(model_name.split('!')) == 1: #No ablated variables, which are flagged with "!" cdr_models_new.append(model_name) cdr_models = cdr_models_new evaluation_sets = [] evaluation_set_partitions = [] evaluation_set_names = [] evaluation_set_paths = [] for p_name in args.partition: partitions = get_partition_list(p_name) partition_str = '-'.join(partitions) X_paths, y_paths = paths_from_partition_cliarg(partitions, p) X, y = read_data(X_paths, y_paths, p.series_ids, categorical_columns=list( set(p.split_ids + p.series_ids + [v for x in cdr_formula_list for v in x.rangf]))) X, y, select, X_response_aligned_predictor_names, X_response_aligned_predictors, X_2d_predictor_names, X_2d_predictors = preprocess_data( X, y, cdr_formula_list, p.series_ids, filters=p.filters, compute_history=True, history_length=p.history_length ) evaluation_sets.append((X, y, select, X_response_aligned_predictor_names, X_response_aligned_predictors, X_2d_predictor_names, X_2d_predictors))