def peak_load_final(self, category): title = "Peak Load" + self.plot_title_tail output_path = self.locator.get_timeseries_plots_file( self.plot_output_path_header + '_peak_load_supply', category) analysis_fields = [ "DH_hs0_kW", "DH_ww0_kW", 'SOLAR_ww0_kW', 'SOLAR_hs0_kW', "DC_cs0_kW", 'DC_cdata0_kW', 'DC_cre0_kW', 'GRID0_kW', 'PV0_kW', 'NG_hs0_kW', 'COAL_hs0_kW', 'OIL_hs0_kW', 'WOOD_hs0_kW', 'NG_ww0_kW', 'COAL_ww0_kW', 'OIL_ww0_kW', 'WOOD_ww0_kW', ] data = self.data_processed['yearly_loads'].copy() analysis_fields = self.erase_zeros(data, analysis_fields) if len(self.buildings) == 1: data = data.set_index("Name").ix[self.buildings[0]] plot = peak_load_building(data, analysis_fields, title, output_path) else: plot = peak_load_district(data, analysis_fields, title, output_path) return plot
def peak_load(self, category): title = "Peak Load" + self.plot_title_tail output_path = self.locator.get_timeseries_plots_file( self.plot_output_path_header + '_peak_load', category) analysis_fields = [ "E_sys0_kW", "Qhs_sys0_kW", "Qww_sys0_kW", "Qcs_sys0_kW", 'Qcdata_sys0_kW', 'Qcre_sys0_kW' ] data = self.data_processed['yearly_loads'].copy() if len(self.buildings) == 1: data = data.set_index("Name").ix[self.buildings[0]] plot = peak_load_building(data, analysis_fields, title, output_path) else: plot = peak_load_district(data, analysis_fields, title, output_path) return plot