Example #1
0
 def test_01_02_larger_secondary(self):
     secondary, mask = cpo.size_similarly(np.zeros((10, 20)),
                                          np.zeros((10, 30)))
     self.assertEqual(tuple(secondary.shape), (10, 20))
     self.assertTrue(np.all(mask))
     secondary, mask = cpo.size_similarly(np.zeros((10, 20)),
                                          np.zeros((20, 20)))
     self.assertEqual(tuple(secondary.shape), (10, 20))
     self.assertTrue(np.all(mask))
Example #2
0
 def test_01_04_size_color(self):
     secondary, mask = cpo.size_similarly(np.zeros((10, 20), int),
                                          np.zeros((10, 15, 3), np.float32))
     self.assertEqual(tuple(secondary.shape), (10, 20, 3))
     self.assertTrue(np.all(mask[:10, :15]))
     self.assertTrue(np.all(~mask[:10, 15:]))
     self.assertEqual(secondary.dtype, np.dtype(np.float32))
Example #3
0
 def run_one_gabor(self, image_name, object_name, scale, workspace):
     objects = workspace.get_objects(object_name)
     labels = objects.segmented
     object_count = np.max(labels)
     if object_count > 0:
         image = workspace.image_set.get_image(image_name,
                                               must_be_grayscale=True)
         pixel_data = image.pixel_data
         labels = objects.segmented
         if image.has_mask:
             mask = image.mask
         else:
             mask = None
         try:
             pixel_data = objects.crop_image_similarly(pixel_data)
             if mask is not None:
                 mask = objects.crop_image_similarly(mask)
                 labels[~mask] = 0
         except ValueError:
             pixel_data, m1 = cpo.size_similarly(labels, pixel_data)
             labels[~m1] = 0
             if mask is not None:
                 mask, m2 = cpo.size_similarly(labels, mask)
                 labels[~m2] = 0
                 labels[~mask] = 0
         pixel_data = normalized_per_object(pixel_data, labels)
         best_score = np.zeros((object_count,))
         for angle in range(self.gabor_angles.value):
             theta = np.pi * angle / self.gabor_angles.value
             g = gabor(pixel_data, labels, scale, theta)
             score_r = fix(scind.sum(g.real, labels,
                                     np.arange(object_count, dtype=np.int32) + 1))
             score_i = fix(scind.sum(g.imag, labels,
                                     np.arange(object_count, dtype=np.int32) + 1))
             score = np.sqrt(score_r ** 2 + score_i ** 2)
             best_score = np.maximum(best_score, score)
     else:
         best_score = np.zeros((0,))
     statistics = self.record_measurement(workspace,
                                          image_name,
                                          object_name,
                                          scale,
                                          F_GABOR,
                                          best_score)
     return statistics
Example #4
0
    def run_one(self, image_name, object_name, scale, angle, workspace):
        """Run, computing the area measurements for a single map of objects"""
        statistics = []
        image = workspace.image_set.get_image(image_name,
                                              must_be_grayscale=True)
        objects = workspace.get_objects(object_name)
        pixel_data = image.pixel_data
        if image.has_mask:
            mask = image.mask
        else:
            mask = None
        labels = objects.segmented
        try:
            pixel_data = objects.crop_image_similarly(pixel_data)
        except ValueError:
            #
            # Recover by cropping the image to the labels
            #
            pixel_data, m1 = cpo.size_similarly(labels, pixel_data)
            if np.any(~m1):
                if mask is None:
                    mask = m1
                else:
                    mask, m2 = cpo.size_similarly(labels, mask)
                    mask[~m2] = False

        if np.all(labels == 0):
            for name in F_HARALICK:
                statistics += self.record_measurement(
                        workspace, image_name, object_name,
                        str(scale) + "_" + H_TO_A[angle], name, np.zeros((0,)))
        else:
            scale_i, scale_j = self.get_angle_ij(angle, scale)

            for name, value in zip(F_HARALICK, Haralick(pixel_data,
                                                        labels,
                                                        scale_i,
                                                        scale_j,
                                                        mask=mask).all()):
                statistics += self.record_measurement(
                        workspace, image_name, object_name,
                        str(scale) + "_" + H_TO_A[angle], name, value)
        return statistics
Example #5
0
    def run_one(self, image_name, object_name, scale, angle, workspace):
        """Run, computing the area measurements for a single map of objects"""
        statistics = []
        image = workspace.image_set.get_image(image_name,
                                              must_be_grayscale=True)
        objects = workspace.get_objects(object_name)
        pixel_data = image.pixel_data
        if image.has_mask:
            mask = image.mask
        else:
            mask = None
        labels = objects.segmented
        try:
            pixel_data = objects.crop_image_similarly(pixel_data)
        except ValueError:
            #
            # Recover by cropping the image to the labels
            #
            pixel_data, m1 = cpo.size_similarly(labels, pixel_data)
            if np.any(~m1):
                if mask is None:
                    mask = m1
                else:
                    mask, m2 = cpo.size_similarly(labels, mask)
                    mask[~m2] = False

        if np.all(labels == 0):
            for name in F_HARALICK:
                statistics += self.record_measurement(
                    workspace, image_name, object_name,
                    str(scale) + "_" + H_TO_A[angle], name, np.zeros((0, )))
        else:
            scale_i, scale_j = self.get_angle_ij(angle, scale)

            for name, value in zip(
                    F_HARALICK,
                    Haralick(pixel_data, labels, scale_i, scale_j,
                             mask=mask).all()):
                statistics += self.record_measurement(
                    workspace, image_name, object_name,
                    str(scale) + "_" + H_TO_A[angle], name, value)
        return statistics
    def filter_labels(self, labels_out, objects, workspace):
        """Filter labels out of the output

        Filter labels that are not in the segmented input labels. Optionally
        filter labels that are touching the edge.

        labels_out - the unfiltered output labels
        objects    - the objects thing, containing both segmented and
                     small_removed labels
        """
        segmented_labels = objects.segmented
        max_out = np.max(labels_out)
        if max_out > 0:
            segmented_labels, m1 = cpo.size_similarly(labels_out, segmented_labels)
            segmented_labels[~m1] = 0
            lookup = scind.maximum(segmented_labels, labels_out, range(max_out + 1))
            lookup = np.array(lookup, int)
            lookup[0] = 0
            segmented_labels_out = lookup[labels_out]
        else:
            segmented_labels_out = labels_out.copy()
        if self.wants_discard_edge:
            image = workspace.image_set.get_image(self.image_name.value)
            if image.has_mask:
                mask_border = image.mask & ~scind.binary_erosion(image.mask)
                edge_labels = segmented_labels_out[mask_border]
            else:
                edge_labels = np.hstack(
                    (
                        segmented_labels_out[0, :],
                        segmented_labels_out[-1, :],
                        segmented_labels_out[:, 0],
                        segmented_labels_out[:, -1],
                    )
                )
            edge_labels = np.unique(edge_labels)
            #
            # Make a lookup table that translates edge labels to zero
            # but translates everything else to itself
            #
            lookup = np.arange(max(max_out, np.max(segmented_labels)) + 1)
            lookup[edge_labels] = 0
            #
            # Run the segmented labels through this to filter out edge
            # labels
            segmented_labels_out = lookup[segmented_labels_out]

        return segmented_labels_out
    def filter_labels(self, labels_out, objects, workspace):
        """Filter labels out of the output

        Filter labels that are not in the segmented input labels. Optionally
        filter labels that are touching the edge.

        labels_out - the unfiltered output labels
        objects    - the objects thing, containing both segmented and
                     small_removed labels
        """
        segmented_labels = objects.segmented
        max_out = np.max(labels_out)
        if max_out > 0:
            segmented_labels, m1 = cpo.size_similarly(labels_out,
                                                      segmented_labels)
            segmented_labels[~m1] = 0
            lookup = scind.maximum(segmented_labels, labels_out,
                                   range(max_out + 1))
            lookup = np.array(lookup, int)
            lookup[0] = 0
            segmented_labels_out = lookup[labels_out]
        else:
            segmented_labels_out = labels_out.copy()
        if self.wants_discard_edge:
            image = workspace.image_set.get_image(self.image_name.value)
            if image.has_mask:
                mask_border = (image.mask & ~scind.binary_erosion(image.mask))
                edge_labels = segmented_labels_out[mask_border]
            else:
                edge_labels = np.hstack(
                    (segmented_labels_out[0, :], segmented_labels_out[-1, :],
                     segmented_labels_out[:, 0], segmented_labels_out[:, -1]))
            edge_labels = np.unique(edge_labels)
            #
            # Make a lookup table that translates edge labels to zero
            # but translates everything else to itself
            #
            lookup = np.arange(max(max_out, np.max(segmented_labels)) + 1)
            lookup[edge_labels] = 0
            #
            # Run the segmented labels through this to filter out edge
            # labels
            segmented_labels_out = lookup[segmented_labels_out]

        return segmented_labels_out
Example #8
0
    def run(self, workspace):
        '''Run the module on an image set'''

        object_name = self.object_name.value
        remaining_object_name = self.remaining_objects.value
        original_objects = workspace.object_set.get_objects(object_name)

        if self.mask_choice == MC_IMAGE:
            mask = workspace.image_set.get_image(self.masking_image.value,
                                                 must_be_binary=True)
            mask = mask.pixel_data
        else:
            masking_objects = workspace.object_set.get_objects(
                    self.masking_objects.value)
            mask = masking_objects.segmented > 0
        if self.wants_inverted_mask:
            mask = ~mask
        #
        # Load the labels
        #
        labels = original_objects.segmented.copy()
        nobjects = np.max(labels)
        #
        # Resize the mask to cover the objects
        #
        mask, m1 = cpo.size_similarly(labels, mask)
        mask[~m1] = False
        #
        # Apply the mask according to the overlap choice.
        #
        if nobjects == 0:
            pass
        elif self.overlap_choice == P_MASK:
            labels = labels * mask
        else:
            pixel_counts = fix(scind.sum(mask, labels,
                                         np.arange(1, nobjects + 1, dtype=np.int32)))
            if self.overlap_choice == P_KEEP:
                keep = pixel_counts > 0
            else:
                total_pixels = fix(scind.sum(np.ones(labels.shape), labels,
                                             np.arange(1, nobjects + 1, dtype=np.int32)))
                if self.overlap_choice == P_REMOVE:
                    keep = pixel_counts == total_pixels
                elif self.overlap_choice == P_REMOVE_PERCENTAGE:
                    fraction = self.overlap_fraction.value
                    keep = pixel_counts / total_pixels >= fraction
                else:
                    raise NotImplementedError("Unknown overlap-handling choice: %s",
                                              self.overlap_choice.value)
            keep = np.hstack(([False], keep))
            labels[~ keep[labels]] = 0
        #
        # Renumber the labels matrix if requested
        #
        if self.retain_or_renumber == R_RENUMBER:
            unique_labels = np.unique(labels[labels != 0])
            indexer = np.zeros(nobjects + 1, int)
            indexer[unique_labels] = np.arange(1, len(unique_labels) + 1)
            labels = indexer[labels]
            parent_objects = unique_labels
        else:
            parent_objects = np.arange(1, nobjects + 1)
        #
        # Add the objects
        #
        remaining_objects = cpo.Objects()
        remaining_objects.segmented = labels
        remaining_objects.unedited_segmented = original_objects.unedited_segmented
        workspace.object_set.add_objects(remaining_objects,
                                         remaining_object_name)
        #
        # Add measurements
        #
        m = workspace.measurements
        m.add_measurement(remaining_object_name,
                          cellprofiler.measurement.FF_PARENT % object_name,
                          parent_objects)
        if np.max(original_objects.segmented) == 0:
            child_count = np.array([], int)
        else:
            child_count = fix(scind.sum(labels, original_objects.segmented,
                                        np.arange(1, nobjects + 1, dtype=np.int32)))
            child_count = (child_count > 0).astype(int)
        m.add_measurement(object_name,
                          cellprofiler.measurement.FF_CHILDREN_COUNT % remaining_object_name,
                          child_count)
        if self.retain_or_renumber == R_RETAIN:
            remaining_object_count = nobjects
        else:
            remaining_object_count = len(unique_labels)
        I.add_object_count_measurements(m, remaining_object_name,
                                        remaining_object_count)
        I.add_object_location_measurements(m, remaining_object_name, labels)
        #
        # Add an outline if asked to do so
        #
        if self.wants_outlines.value:
            outline_image = cpi.Image(outline(labels) > 0,
                                      parent_image=original_objects.parent_image)
            workspace.image_set.add(self.outlines_name.value, outline_image)
        #
        # Save the input, mask and output images for display
        #
        if self.show_window:
            workspace.display_data.original_labels = original_objects.segmented
            workspace.display_data.final_labels = labels
            workspace.display_data.mask = mask
    def run(self, workspace):
        """Run the module on the current data set

        workspace - has the current image set, object set, measurements
                    and the parent frame for the application if the module
                    is allowed to display. If the module should not display,
                    workspace.frame is None.
        """
        #
        # The object set holds "objects". Each of these is a container
        # for holding up to three kinds of image labels.
        #
        object_set = workspace.object_set
        #
        # Get the primary objects (the centers to be removed).
        # Get the string value out of primary_object_name.
        #
        primary_objects = object_set.get_objects(
            self.primary_objects_name.value)
        #
        # Get the cleaned-up labels image
        #
        primary_labels = primary_objects.segmented
        #
        # Do the same with the secondary object
        secondary_objects = object_set.get_objects(
            self.secondary_objects_name.value)
        secondary_labels = secondary_objects.segmented
        #
        # If one of the two label images is smaller than the other, we
        # try to find the cropping mask and we apply that mask to the larger
        #
        try:
            if any([
                    p_size < s_size for p_size, s_size in zip(
                        primary_labels.shape, secondary_labels.shape)
            ]):
                #
                # Look for a cropping mask associated with the primary_labels
                # and apply that mask to resize the secondary labels
                #
                secondary_labels = primary_objects.crop_image_similarly(
                    secondary_labels)
                tertiary_image = primary_objects.parent_image
            elif any([
                    p_size > s_size for p_size, s_size in zip(
                        primary_labels.shape, secondary_labels.shape)
            ]):
                primary_labels = secondary_objects.crop_image_similarly(
                    primary_labels)
                tertiary_image = secondary_objects.parent_image
            elif secondary_objects.parent_image is not None:
                tertiary_image = secondary_objects.parent_image
            else:
                tertiary_image = primary_objects.parent_image
        except ValueError:
            # No suitable cropping - resize all to fit the secondary
            # labels which are the most critical.
            #
            primary_labels, _ = cpo.size_similarly(secondary_labels,
                                                   primary_labels)
            if secondary_objects.parent_image is not None:
                tertiary_image = secondary_objects.parent_image
            else:
                tertiary_image = primary_objects.parent_image
                if tertiary_image is not None:
                    tertiary_image, _ = cpo.size_similarly(
                        secondary_labels, tertiary_image)
        #
        # Find the outlines of the primary image and use this to shrink the
        # primary image by one. This guarantees that there is something left
        # of the secondary image after subtraction
        #
        primary_outline = outline(primary_labels)
        tertiary_labels = secondary_labels.copy()
        if self.shrink_primary:
            primary_mask = np.logical_or(primary_labels == 0, primary_outline)
        else:
            primary_mask = primary_labels == 0
        tertiary_labels[primary_mask == False] = 0
        #
        # Get the outlines of the tertiary image
        #
        tertiary_outlines = outline(tertiary_labels) != 0
        #
        # Make the tertiary objects container
        #
        tertiary_objects = cpo.Objects()
        tertiary_objects.segmented = tertiary_labels
        tertiary_objects.parent_image = tertiary_image
        #
        # Relate tertiary objects to their parents & record
        #
        child_count_of_secondary, secondary_parents = \
            secondary_objects.relate_children(tertiary_objects)
        if self.shrink_primary:
            child_count_of_primary, primary_parents = \
                primary_objects.relate_children(tertiary_objects)
        else:
            # Primary and tertiary don't overlap.
            # Establish overlap between primary and secondary and commute
            _, secondary_of_primary = \
                secondary_objects.relate_children(primary_objects)
            mask = secondary_of_primary != 0
            child_count_of_primary = np.zeros(mask.shape, int)
            child_count_of_primary[mask] = child_count_of_secondary[
                secondary_of_primary[mask] - 1]
            primary_parents = np.zeros(secondary_parents.shape,
                                       secondary_parents.dtype)
            primary_of_secondary = np.zeros(secondary_objects.count + 1, int)
            primary_of_secondary[secondary_of_primary] = \
                np.arange(1, len(secondary_of_primary) + 1)
            primary_of_secondary[0] = 0
            primary_parents = primary_of_secondary[secondary_parents]
        #
        # Write out the objects
        #
        workspace.object_set.add_objects(tertiary_objects,
                                         self.subregion_objects_name.value)
        #
        # Write out the measurements
        #
        m = workspace.measurements
        #
        # The parent/child associations
        #
        for parent_objects_name, parents_of, child_count, relationship in (
            (self.primary_objects_name, primary_parents,
             child_count_of_primary, R_REMOVED),
            (self.secondary_objects_name, secondary_parents,
             child_count_of_secondary, R_PARENT)):
            m.add_measurement(
                self.subregion_objects_name.value,
                cellprofiler.measurement.FF_PARENT % parent_objects_name.value,
                parents_of)
            m.add_measurement(
                parent_objects_name.value,
                cellprofiler.measurement.FF_CHILDREN_COUNT %
                self.subregion_objects_name.value, child_count)
            mask = parents_of != 0
            image_number = np.ones(np.sum(mask), int) * m.image_set_number
            child_object_number = np.argwhere(mask).flatten() + 1
            parent_object_number = parents_of[mask]
            m.add_relate_measurement(self.module_num, relationship,
                                     parent_objects_name.value,
                                     self.subregion_objects_name.value,
                                     image_number, parent_object_number,
                                     image_number, child_object_number)

        object_count = tertiary_objects.count
        #
        # The object count
        #
        cpmi.add_object_count_measurements(workspace.measurements,
                                           self.subregion_objects_name.value,
                                           object_count)
        #
        # The object locations
        #
        cpmi.add_object_location_measurements(
            workspace.measurements, self.subregion_objects_name.value,
            tertiary_labels)

        if self.show_window:
            workspace.display_data.primary_labels = primary_labels
            workspace.display_data.secondary_labels = secondary_labels
            workspace.display_data.tertiary_labels = tertiary_labels
            workspace.display_data.tertiary_outlines = tertiary_outlines
    def run_image_pair_objects(self, workspace, first_image_name,
                               second_image_name, object_name):
        '''Calculate per-object correlations between intensities in two images'''
        first_image = workspace.image_set.get_image(first_image_name,
                                                    must_be_grayscale=True)
        second_image = workspace.image_set.get_image(second_image_name,
                                                     must_be_grayscale=True)
        objects = workspace.object_set.get_objects(object_name)
        #
        # Crop both images to the size of the labels matrix
        #
        labels = objects.segmented
        try:
            first_pixels = objects.crop_image_similarly(first_image.pixel_data)
            first_mask = objects.crop_image_similarly(first_image.mask)
        except ValueError:
            first_pixels, m1 = cpo.size_similarly(labels, first_image.pixel_data)
            first_mask, m1 = cpo.size_similarly(labels, first_image.mask)
            first_mask[~m1] = False
        try:
            second_pixels = objects.crop_image_similarly(second_image.pixel_data)
            second_mask = objects.crop_image_similarly(second_image.mask)
        except ValueError:
            second_pixels, m1 = cpo.size_similarly(labels, second_image.pixel_data)
            second_mask, m1 = cpo.size_similarly(labels, second_image.mask)
            second_mask[~m1] = False
        mask = ((labels > 0) & first_mask & second_mask)
        first_pixels = first_pixels[mask]
        second_pixels = second_pixels[mask]
        labels = labels[mask]
        result = []
        first_pixel_data = first_image.pixel_data
        first_mask = first_image.mask
        first_pixel_count = np.product(first_pixel_data.shape)
        second_pixel_data = second_image.pixel_data
        second_mask = second_image.mask
        second_pixel_count = np.product(second_pixel_data.shape)
        #
        # Crop the larger image similarly to the smaller one
        #
        if first_pixel_count < second_pixel_count:
            second_pixel_data = first_image.crop_image_similarly(second_pixel_data)
            second_mask = first_image.crop_image_similarly(second_mask)
        elif second_pixel_count < first_pixel_count:
            first_pixel_data = second_image.crop_image_similarly(first_pixel_data)
            first_mask = second_image.crop_image_similarly(first_mask)
        mask = (first_mask & second_mask &
                (~ np.isnan(first_pixel_data)) &
                (~ np.isnan(second_pixel_data)))
        if np.any(mask):
            #
            # Perform the correlation, which returns:
            # [ [ii, ij],
            #   [ji, jj] ]
            #
            fi = first_pixel_data[mask]
            si = second_pixel_data[mask]

        n_objects = objects.count
        # Handle case when both images for the correlation are completely masked out

        if n_objects == 0:
            corr = np.zeros((0,))
            overlap = np.zeros((0,))
            K1 = np.zeros((0,))
            K2 = np.zeros((0,))
            M1 = np.zeros((0,))
            M2 = np.zeros((0,))
            RWC1 = np.zeros((0,))
            RWC2 = np.zeros((0,))
            C1 = np.zeros((0,))
            C2 = np.zeros((0,))
        elif np.where(mask)[0].__len__() == 0:
            corr = np.zeros((n_objects,))
            corr[:] = np.NaN
            overlap = K1 = K2 = M1 = M2 = RWC1 = RWC2 = C1 = C2 = corr
        else:
            #
            # The correlation is sum((x-mean(x))(y-mean(y)) /
            #                         ((n-1) * std(x) *std(y)))
            #
            lrange = np.arange(n_objects, dtype=np.int32) + 1
            area = fix(scind.sum(np.ones_like(labels), labels, lrange))
            mean1 = fix(scind.mean(first_pixels, labels, lrange))
            mean2 = fix(scind.mean(second_pixels, labels, lrange))
            #
            # Calculate the standard deviation times the population.
            #
            std1 = np.sqrt(fix(scind.sum((first_pixels - mean1[labels - 1]) ** 2,
                                         labels, lrange)))
            std2 = np.sqrt(fix(scind.sum((second_pixels - mean2[labels - 1]) ** 2,
                                         labels, lrange)))
            x = first_pixels - mean1[labels - 1]  # x - mean(x)
            y = second_pixels - mean2[labels - 1]  # y - mean(y)
            corr = fix(scind.sum(x * y / (std1[labels - 1] * std2[labels - 1]),
                                 labels, lrange))
            # Explicitly set the correlation to NaN for masked objects
            corr[scind.sum(1, labels, lrange) == 0] = np.NaN
            result += [
                [first_image_name, second_image_name, object_name, "Mean Correlation coeff", "%.3f" % np.mean(corr)],
                [first_image_name, second_image_name, object_name, "Median Correlation coeff",
                 "%.3f" % np.median(corr)],
                [first_image_name, second_image_name, object_name, "Min Correlation coeff", "%.3f" % np.min(corr)],
                [first_image_name, second_image_name, object_name, "Max Correlation coeff", "%.3f" % np.max(corr)]]

            # Threshold as percentage of maximum intensity of objects in each channel
            tff = (self.thr.value / 100) * fix(scind.maximum(first_pixels, labels, lrange))
            tss = (self.thr.value / 100) * fix(scind.maximum(second_pixels, labels, lrange))

            combined_thresh = (first_pixels >= tff[labels - 1]) & (second_pixels >= tss[labels - 1])
            fi_thresh = first_pixels[combined_thresh]
            si_thresh = second_pixels[combined_thresh]
            tot_fi_thr = scind.sum(first_pixels[first_pixels >= tff[labels - 1]], labels[first_pixels >= tff[labels - 1]],
                                   lrange)
            tot_si_thr = scind.sum(second_pixels[second_pixels >= tss[labels - 1]],
                                   labels[second_pixels >= tss[labels - 1]], lrange)

            nonZero = (fi > 0) | (si > 0)
            xvar = np.var(fi[nonZero], axis=0, ddof=1)
            yvar = np.var(si[nonZero], axis=0, ddof=1)

            xmean = np.mean(fi[nonZero], axis=0)
            ymean = np.mean(si[nonZero], axis=0)

            z = fi[nonZero] + si[nonZero]
            zvar = np.var(z, axis=0, ddof=1)

            covar = 0.5 * (zvar - (xvar + yvar))

            denom = 2 * covar
            num = (yvar - xvar) + np.sqrt((yvar - xvar) * (yvar - xvar) + 4 * (covar * covar))
            a = (num / denom)
            b = (ymean - a * xmean)

            i = 1
            while i > 0.003921568627:
                thr_fi_c = i
                thr_si_c = (a * i) + b
                combt = (fi < thr_fi_c) | (si < thr_si_c)
                costReg = scistat.pearsonr(fi[combt], si[combt])
                if costReg[0] <= 0:
                    break
                i = i - 0.003921568627

            # Costes' thershold for entire image is applied to each object
            fi_above_thr = first_pixels > thr_fi_c
            si_above_thr = second_pixels > thr_si_c
            combined_thresh_c = fi_above_thr & si_above_thr
            fi_thresh_c = first_pixels[combined_thresh_c]
            si_thresh_c = second_pixels[combined_thresh_c]
            if np.any(fi_above_thr):
                tot_fi_thr_c = scind.sum(first_pixels[first_pixels >= thr_fi_c], labels[first_pixels >= thr_fi_c], lrange)
            else:
                tot_fi_thr_c = np.zeros(len(lrange))
            if np.any(si_above_thr):
                tot_si_thr_c = scind.sum(second_pixels[second_pixels >= thr_si_c], labels[second_pixels >= thr_si_c],
                                         lrange)
            else:
                tot_si_thr_c = np.zeros(len(lrange))

            # Manders Coefficient
            M1 = np.zeros(len(lrange))
            M2 = np.zeros(len(lrange))

            if np.any(combined_thresh):
                M1 = np.array(scind.sum(fi_thresh,labels[combined_thresh],lrange)) / np.array(tot_fi_thr)
                M2 = np.array(scind.sum(si_thresh,labels[combined_thresh],lrange)) / np.array(tot_si_thr)
            result += [[first_image_name, second_image_name, object_name,"Mean Manders coeff","%.3f"%np.mean(M1)],
                       [first_image_name, second_image_name, object_name,"Median Manders coeff","%.3f"%np.median(M1)],
                       [first_image_name, second_image_name, object_name,"Min Manders coeff","%.3f"%np.min(M1)],
                       [first_image_name, second_image_name, object_name,"Max Manders coeff","%.3f"%np.max(M1)]]
            result += [[second_image_name, first_image_name, object_name,"Mean Manders coeff","%.3f"%np.mean(M2)],
                       [second_image_name, first_image_name, object_name,"Median Manders coeff","%.3f"%np.median(M2)],
                       [second_image_name, first_image_name, object_name,"Min Manders coeff","%.3f"%np.min(M2)],
                       [second_image_name, first_image_name, object_name,"Max Manders coeff","%.3f"%np.max(M2)]]

            # RWC Coefficient
            RWC1 = np.zeros(len(lrange))
            RWC2 = np.zeros(len(lrange))
            [Rank1] = np.lexsort(([labels], [first_pixels]))
            [Rank2] = np.lexsort(([labels], [second_pixels]))
            Rank1_U = np.hstack([[False], first_pixels[Rank1[:-1]] != first_pixels[Rank1[1:]]])
            Rank2_U = np.hstack([[False], second_pixels[Rank2[:-1]] != second_pixels[Rank2[1:]]])
            Rank1_S = np.cumsum(Rank1_U)
            Rank2_S = np.cumsum(Rank2_U)
            Rank_im1 = np.zeros(first_pixels.shape, dtype=int)
            Rank_im2 = np.zeros(second_pixels.shape, dtype=int)
            Rank_im1[Rank1] = Rank1_S
            Rank_im2[Rank2] = Rank2_S

            R = max(Rank_im1.max(), Rank_im2.max()) + 1
            Di = abs(Rank_im1 - Rank_im2)
            weight = (R - Di) * 1.0 / R
            weight_thresh = weight[combined_thresh]

            if np.any(combined_thresh):
                RWC1 = np.array(scind.sum(fi_thresh * weight_thresh, labels[combined_thresh], lrange)) / np.array(
                        tot_fi_thr)
                RWC2 = np.array(scind.sum(si_thresh * weight_thresh, labels[combined_thresh], lrange)) / np.array(
                        tot_si_thr)

            result += [[first_image_name, second_image_name, object_name, "Mean RWC coeff", "%.3f" % np.mean(RWC1)],
                       [first_image_name, second_image_name, object_name, "Median RWC coeff", "%.3f" % np.median(RWC1)],
                       [first_image_name, second_image_name, object_name, "Min RWC coeff", "%.3f" % np.min(RWC1)],
                       [first_image_name, second_image_name, object_name, "Max RWC coeff", "%.3f" % np.max(RWC1)]]
            result += [[second_image_name, first_image_name, object_name, "Mean RWC coeff", "%.3f" % np.mean(RWC2)],
                       [second_image_name, first_image_name, object_name, "Median RWC coeff", "%.3f" % np.median(RWC2)],
                       [second_image_name, first_image_name, object_name, "Min RWC coeff", "%.3f" % np.min(RWC2)],
                       [second_image_name, first_image_name, object_name, "Max RWC coeff", "%.3f" % np.max(RWC2)]]

            # Costes Automated Threshold
            C1 = np.zeros(len(lrange))
            C2 = np.zeros(len(lrange))
            if np.any(combined_thresh_c):
                C1 = np.array(scind.sum(fi_thresh_c,labels[combined_thresh_c],lrange)) / np.array(tot_fi_thr_c)
                C2 = np.array(scind.sum(si_thresh_c,labels[combined_thresh_c],lrange)) / np.array(tot_si_thr_c)
            result += [[first_image_name, second_image_name, object_name,"Mean Manders coeff (Costes)","%.3f"%np.mean(C1)],
                       [first_image_name, second_image_name, object_name,"Median Manders coeff (Costes)","%.3f"%np.median(C1)],
                       [first_image_name, second_image_name, object_name,"Min Manders coeff (Costes)","%.3f"%np.min(C1)],
                       [first_image_name, second_image_name, object_name,"Max Manders coeff (Costes)","%.3f"%np.max(C1)]
                       ]
            result += [[second_image_name, first_image_name, object_name,"Mean Manders coeff (Costes)","%.3f"%np.mean(C2)],
                       [second_image_name, first_image_name, object_name,"Median Manders coeff (Costes)","%.3f"%np.median(C2)],
                       [second_image_name, first_image_name, object_name,"Min Manders coeff (Costes)","%.3f"%np.min(C2)],
                       [second_image_name, first_image_name, object_name,"Max Manders coeff (Costes)","%.3f"%np.max(C2)]
                       ]

            # Overlap Coefficient
            if np.any(combined_thresh):
                fpsq = scind.sum(first_pixels[combined_thresh] ** 2, labels[combined_thresh], lrange)
                spsq = scind.sum(second_pixels[combined_thresh] ** 2, labels[combined_thresh], lrange)
                pdt = np.sqrt(np.array(fpsq) * np.array(spsq))

                overlap = fix(
                        scind.sum(first_pixels[combined_thresh] * second_pixels[combined_thresh],
                                  labels[combined_thresh],
                                  lrange) / pdt)
                K1 = fix((scind.sum(first_pixels[combined_thresh] * second_pixels[combined_thresh],
                                    labels[combined_thresh], lrange)) / (np.array(fpsq)))
                K2 = fix(
                        scind.sum(first_pixels[combined_thresh] * second_pixels[combined_thresh],
                                  labels[combined_thresh],
                                  lrange) / np.array(spsq))
            else:
                overlap = K1 = K2 = np.zeros(len(lrange))
            result += [
                [first_image_name, second_image_name, object_name, "Mean Overlap coeff", "%.3f" % np.mean(overlap)],
                [first_image_name, second_image_name, object_name, "Median Overlap coeff", "%.3f" % np.median(overlap)],
                [first_image_name, second_image_name, object_name, "Min Overlap coeff", "%.3f" % np.min(overlap)],
                [first_image_name, second_image_name, object_name, "Max Overlap coeff", "%.3f" % np.max(overlap)]]

        measurement = ("Correlation_Correlation_%s_%s" %
                       (first_image_name, second_image_name))
        overlap_measurement = (F_OVERLAP_FORMAT % (first_image_name,
                                                   second_image_name))
        k_measurement_1 = (F_K_FORMAT % (first_image_name,
                                         second_image_name))
        k_measurement_2 = (F_K_FORMAT % (second_image_name,
                                         first_image_name))
        manders_measurement_1 = (F_MANDERS_FORMAT % (first_image_name,
                                                     second_image_name))
        manders_measurement_2 = (F_MANDERS_FORMAT % (second_image_name,
                                                     first_image_name))
        rwc_measurement_1 = (F_RWC_FORMAT % (first_image_name,
                                             second_image_name))
        rwc_measurement_2 = (F_RWC_FORMAT % (second_image_name,
                                             first_image_name))
        costes_measurement_1 = (F_COSTES_FORMAT % (first_image_name,
                                                   second_image_name))
        costes_measurement_2 = (F_COSTES_FORMAT % (second_image_name,
                                                   first_image_name))

        workspace.measurements.add_measurement(object_name, measurement, corr)
        workspace.measurements.add_measurement(object_name, overlap_measurement, overlap)
        workspace.measurements.add_measurement(object_name, k_measurement_1, K1)
        workspace.measurements.add_measurement(object_name, k_measurement_2, K2)
        workspace.measurements.add_measurement(object_name, manders_measurement_1, M1)
        workspace.measurements.add_measurement(object_name, manders_measurement_2, M2)
        workspace.measurements.add_measurement(object_name, rwc_measurement_1, RWC1)
        workspace.measurements.add_measurement(object_name, rwc_measurement_2, RWC2)
        workspace.measurements.add_measurement(object_name, costes_measurement_1, C1)
        workspace.measurements.add_measurement(object_name, costes_measurement_2, C2)

        if n_objects == 0:
            return [[first_image_name, second_image_name, object_name,
                     "Mean correlation", "-"],
                    [first_image_name, second_image_name, object_name,
                     "Median correlation", "-"],
                    [first_image_name, second_image_name, object_name,
                     "Min correlation", "-"],
                    [first_image_name, second_image_name, object_name,
                     "Max correlation", "-"]]
        else:
            return result
    def run(self, workspace):
        """Run the module on the current data set

        workspace - has the current image set, object set, measurements
                    and the parent frame for the application if the module
                    is allowed to display. If the module should not display,
                    workspace.frame is None.
        """
        #
        # The object set holds "objects". Each of these is a container
        # for holding up to three kinds of image labels.
        #
        object_set = workspace.object_set
        #
        # Get the primary objects (the centers to be removed).
        # Get the string value out of primary_object_name.
        #
        primary_objects = object_set.get_objects(self.primary_objects_name.value)
        #
        # Get the cleaned-up labels image
        #
        primary_labels = primary_objects.segmented
        #
        # Do the same with the secondary object
        secondary_objects = object_set.get_objects(self.secondary_objects_name.value)
        secondary_labels = secondary_objects.segmented
        #
        # If one of the two label images is smaller than the other, we
        # try to find the cropping mask and we apply that mask to the larger
        #
        try:
            if any([p_size < s_size for p_size, s_size in zip(primary_labels.shape, secondary_labels.shape)]):
                #
                # Look for a cropping mask associated with the primary_labels
                # and apply that mask to resize the secondary labels
                #
                secondary_labels = primary_objects.crop_image_similarly(secondary_labels)
                tertiary_image = primary_objects.parent_image
            elif any([p_size > s_size for p_size, s_size in zip(primary_labels.shape, secondary_labels.shape)]):
                primary_labels = secondary_objects.crop_image_similarly(primary_labels)
                tertiary_image = secondary_objects.parent_image
            elif secondary_objects.parent_image is not None:
                tertiary_image = secondary_objects.parent_image
            else:
                tertiary_image = primary_objects.parent_image
        except ValueError:
            # No suitable cropping - resize all to fit the secondary
            # labels which are the most critical.
            #
            primary_labels, _ = cpo.size_similarly(secondary_labels, primary_labels)
            if secondary_objects.parent_image is not None:
                tertiary_image = secondary_objects.parent_image
            else:
                tertiary_image = primary_objects.parent_image
                if tertiary_image is not None:
                    tertiary_image, _ = cpo.size_similarly(secondary_labels, tertiary_image)
        #
        # Find the outlines of the primary image and use this to shrink the
        # primary image by one. This guarantees that there is something left
        # of the secondary image after subtraction
        #
        primary_outline = outline(primary_labels)
        tertiary_labels = secondary_labels.copy()
        if self.shrink_primary:
            primary_mask = np.logical_or(primary_labels == 0, primary_outline)
        else:
            primary_mask = primary_labels == 0
        tertiary_labels[primary_mask == False] = 0
        #
        # Get the outlines of the tertiary image
        #
        tertiary_outlines = outline(tertiary_labels) != 0
        #
        # Make the tertiary objects container
        #
        tertiary_objects = cpo.Objects()
        tertiary_objects.segmented = tertiary_labels
        tertiary_objects.parent_image = tertiary_image
        #
        # Relate tertiary objects to their parents & record
        #
        child_count_of_secondary, secondary_parents = secondary_objects.relate_children(tertiary_objects)
        if self.shrink_primary:
            child_count_of_primary, primary_parents = primary_objects.relate_children(tertiary_objects)
        else:
            # Primary and tertiary don't overlap.
            # Establish overlap between primary and secondary and commute
            _, secondary_of_primary = secondary_objects.relate_children(primary_objects)
            mask = secondary_of_primary != 0
            child_count_of_primary = np.zeros(mask.shape, int)
            child_count_of_primary[mask] = child_count_of_secondary[secondary_of_primary[mask] - 1]
            primary_parents = np.zeros(secondary_parents.shape, secondary_parents.dtype)
            primary_of_secondary = np.zeros(secondary_objects.count + 1, int)
            primary_of_secondary[secondary_of_primary] = np.arange(1, len(secondary_of_primary) + 1)
            primary_of_secondary[0] = 0
            primary_parents = primary_of_secondary[secondary_parents]
        #
        # Write out the objects
        #
        workspace.object_set.add_objects(tertiary_objects, self.subregion_objects_name.value)
        #
        # Write out the measurements
        #
        m = workspace.measurements
        #
        # The parent/child associations
        #
        for parent_objects_name, parents_of, child_count, relationship in (
            (self.primary_objects_name, primary_parents, child_count_of_primary, R_REMOVED),
            (self.secondary_objects_name, secondary_parents, child_count_of_secondary, R_PARENT),
        ):
            m.add_measurement(self.subregion_objects_name.value, cpmi.FF_PARENT % parent_objects_name.value, parents_of)
            m.add_measurement(
                parent_objects_name.value, cpmi.FF_CHILDREN_COUNT % self.subregion_objects_name.value, child_count
            )
            mask = parents_of != 0
            image_number = np.ones(np.sum(mask), int) * m.image_set_number
            child_object_number = np.argwhere(mask).flatten() + 1
            parent_object_number = parents_of[mask]
            m.add_relate_measurement(
                self.module_num,
                relationship,
                parent_objects_name.value,
                self.subregion_objects_name.value,
                image_number,
                parent_object_number,
                image_number,
                child_object_number,
            )

        object_count = tertiary_objects.count
        #
        # The object count
        #
        cpmi.add_object_count_measurements(workspace.measurements, self.subregion_objects_name.value, object_count)
        #
        # The object locations
        #
        cpmi.add_object_location_measurements(
            workspace.measurements, self.subregion_objects_name.value, tertiary_labels
        )
        #
        # The outlines
        #
        if self.use_outlines.value:
            out_img = cpi.Image(tertiary_outlines.astype(bool), parent_image=tertiary_image)
            workspace.image_set.add(self.outlines_name.value, out_img)

        if self.show_window:
            workspace.display_data.primary_labels = primary_labels
            workspace.display_data.secondary_labels = secondary_labels
            workspace.display_data.tertiary_labels = tertiary_labels
            workspace.display_data.tertiary_outlines = tertiary_outlines
Example #12
0
    def run(self, workspace):
        '''Run the module on an image set'''

        object_name = self.object_name.value
        remaining_object_name = self.remaining_objects.value
        original_objects = workspace.object_set.get_objects(object_name)

        if self.mask_choice == MC_IMAGE:
            mask = workspace.image_set.get_image(self.masking_image.value,
                                                 must_be_binary=True)
            mask = mask.pixel_data
        else:
            masking_objects = workspace.object_set.get_objects(
                self.masking_objects.value)
            mask = masking_objects.segmented > 0
        if self.wants_inverted_mask:
            mask = ~mask
        #
        # Load the labels
        #
        labels = original_objects.segmented.copy()
        nobjects = np.max(labels)
        #
        # Resize the mask to cover the objects
        #
        mask, m1 = cpo.size_similarly(labels, mask)
        mask[~m1] = False
        #
        # Apply the mask according to the overlap choice.
        #
        if nobjects == 0:
            pass
        elif self.overlap_choice == P_MASK:
            labels = labels * mask
        else:
            pixel_counts = fix(
                scind.sum(mask, labels,
                          np.arange(1, nobjects + 1, dtype=np.int32)))
            if self.overlap_choice == P_KEEP:
                keep = pixel_counts > 0
            else:
                total_pixels = fix(
                    scind.sum(np.ones(labels.shape), labels,
                              np.arange(1, nobjects + 1, dtype=np.int32)))
                if self.overlap_choice == P_REMOVE:
                    keep = pixel_counts == total_pixels
                elif self.overlap_choice == P_REMOVE_PERCENTAGE:
                    fraction = self.overlap_fraction.value
                    keep = pixel_counts / total_pixels >= fraction
                else:
                    raise NotImplementedError(
                        "Unknown overlap-handling choice: %s",
                        self.overlap_choice.value)
            keep = np.hstack(([False], keep))
            labels[~keep[labels]] = 0
        #
        # Renumber the labels matrix if requested
        #
        if self.retain_or_renumber == R_RENUMBER:
            unique_labels = np.unique(labels[labels != 0])
            indexer = np.zeros(nobjects + 1, int)
            indexer[unique_labels] = np.arange(1, len(unique_labels) + 1)
            labels = indexer[labels]
            parent_objects = unique_labels
        else:
            parent_objects = np.arange(1, nobjects + 1)
        #
        # Add the objects
        #
        remaining_objects = cpo.Objects()
        remaining_objects.segmented = labels
        remaining_objects.unedited_segmented = original_objects.unedited_segmented
        workspace.object_set.add_objects(remaining_objects,
                                         remaining_object_name)
        #
        # Add measurements
        #
        m = workspace.measurements
        m.add_measurement(remaining_object_name,
                          cellprofiler.measurement.FF_PARENT % object_name,
                          parent_objects)
        if np.max(original_objects.segmented) == 0:
            child_count = np.array([], int)
        else:
            child_count = fix(
                scind.sum(labels, original_objects.segmented,
                          np.arange(1, nobjects + 1, dtype=np.int32)))
            child_count = (child_count > 0).astype(int)
        m.add_measurement(
            object_name,
            cellprofiler.measurement.FF_CHILDREN_COUNT % remaining_object_name,
            child_count)
        if self.retain_or_renumber == R_RETAIN:
            remaining_object_count = nobjects
        else:
            remaining_object_count = len(unique_labels)
        I.add_object_count_measurements(m, remaining_object_name,
                                        remaining_object_count)
        I.add_object_location_measurements(m, remaining_object_name, labels)
        #
        # Save the input, mask and output images for display
        #
        if self.show_window:
            workspace.display_data.original_labels = original_objects.segmented
            workspace.display_data.final_labels = labels
            workspace.display_data.mask = mask
    def run_image_pair_objects(self, workspace, first_image_name,
                               second_image_name, object_name):
        '''Calculate per-object correlations between intensities in two images'''
        first_image = workspace.image_set.get_image(first_image_name,
                                                    must_be_grayscale=True)
        second_image = workspace.image_set.get_image(second_image_name,
                                                     must_be_grayscale=True)
        objects = workspace.object_set.get_objects(object_name)
        #
        # Crop both images to the size of the labels matrix
        #
        labels = objects.segmented
        try:
            first_pixels = objects.crop_image_similarly(first_image.pixel_data)
            first_mask = objects.crop_image_similarly(first_image.mask)
        except ValueError:
            first_pixels, m1 = cpo.size_similarly(labels,
                                                  first_image.pixel_data)
            first_mask, m1 = cpo.size_similarly(labels, first_image.mask)
            first_mask[~m1] = False
        try:
            second_pixels = objects.crop_image_similarly(
                second_image.pixel_data)
            second_mask = objects.crop_image_similarly(second_image.mask)
        except ValueError:
            second_pixels, m1 = cpo.size_similarly(labels,
                                                   second_image.pixel_data)
            second_mask, m1 = cpo.size_similarly(labels, second_image.mask)
            second_mask[~m1] = False
        mask = ((labels > 0) & first_mask & second_mask)
        first_pixels = first_pixels[mask]
        second_pixels = second_pixels[mask]
        labels = labels[mask]
        result = []
        first_pixel_data = first_image.pixel_data
        first_mask = first_image.mask
        first_pixel_count = np.product(first_pixel_data.shape)
        second_pixel_data = second_image.pixel_data
        second_mask = second_image.mask
        second_pixel_count = np.product(second_pixel_data.shape)
        #
        # Crop the larger image similarly to the smaller one
        #
        if first_pixel_count < second_pixel_count:
            second_pixel_data = first_image.crop_image_similarly(
                second_pixel_data)
            second_mask = first_image.crop_image_similarly(second_mask)
        elif second_pixel_count < first_pixel_count:
            first_pixel_data = second_image.crop_image_similarly(
                first_pixel_data)
            first_mask = second_image.crop_image_similarly(first_mask)
        mask = (first_mask & second_mask & (~np.isnan(first_pixel_data)) &
                (~np.isnan(second_pixel_data)))
        if np.any(mask):
            #
            # Perform the correlation, which returns:
            # [ [ii, ij],
            #   [ji, jj] ]
            #
            fi = first_pixel_data[mask]
            si = second_pixel_data[mask]

        n_objects = objects.count
        # Handle case when both images for the correlation are completely masked out

        if n_objects == 0:
            corr = np.zeros((0, ))
            overlap = np.zeros((0, ))
            K1 = np.zeros((0, ))
            K2 = np.zeros((0, ))
            M1 = np.zeros((0, ))
            M2 = np.zeros((0, ))
            RWC1 = np.zeros((0, ))
            RWC2 = np.zeros((0, ))
            C1 = np.zeros((0, ))
            C2 = np.zeros((0, ))
        elif np.where(mask)[0].__len__() == 0:
            corr = np.zeros((n_objects, ))
            corr[:] = np.NaN
            overlap = K1 = K2 = M1 = M2 = RWC1 = RWC2 = C1 = C2 = corr
        else:
            #
            # The correlation is sum((x-mean(x))(y-mean(y)) /
            #                         ((n-1) * std(x) *std(y)))
            #
            lrange = np.arange(n_objects, dtype=np.int32) + 1
            area = fix(scind.sum(np.ones_like(labels), labels, lrange))
            mean1 = fix(scind.mean(first_pixels, labels, lrange))
            mean2 = fix(scind.mean(second_pixels, labels, lrange))
            #
            # Calculate the standard deviation times the population.
            #
            std1 = np.sqrt(
                fix(
                    scind.sum((first_pixels - mean1[labels - 1])**2, labels,
                              lrange)))
            std2 = np.sqrt(
                fix(
                    scind.sum((second_pixels - mean2[labels - 1])**2, labels,
                              lrange)))
            x = first_pixels - mean1[labels - 1]  # x - mean(x)
            y = second_pixels - mean2[labels - 1]  # y - mean(y)
            corr = fix(
                scind.sum(x * y / (std1[labels - 1] * std2[labels - 1]),
                          labels, lrange))
            # Explicitly set the correlation to NaN for masked objects
            corr[scind.sum(1, labels, lrange) == 0] = np.NaN
            result += [[
                first_image_name, second_image_name, object_name,
                "Mean Correlation coeff",
                "%.3f" % np.mean(corr)
            ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Median Correlation coeff",
                           "%.3f" % np.median(corr)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Min Correlation coeff",
                           "%.3f" % np.min(corr)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Max Correlation coeff",
                           "%.3f" % np.max(corr)
                       ]]

            # Threshold as percentage of maximum intensity of objects in each channel
            tff = (self.thr.value / 100) * fix(
                scind.maximum(first_pixels, labels, lrange))
            tss = (self.thr.value / 100) * fix(
                scind.maximum(second_pixels, labels, lrange))

            combined_thresh = (first_pixels >= tff[labels - 1]) & (
                second_pixels >= tss[labels - 1])
            fi_thresh = first_pixels[combined_thresh]
            si_thresh = second_pixels[combined_thresh]
            tot_fi_thr = scind.sum(
                first_pixels[first_pixels >= tff[labels - 1]],
                labels[first_pixels >= tff[labels - 1]], lrange)
            tot_si_thr = scind.sum(
                second_pixels[second_pixels >= tss[labels - 1]],
                labels[second_pixels >= tss[labels - 1]], lrange)

            nonZero = (fi > 0) | (si > 0)
            xvar = np.var(fi[nonZero], axis=0, ddof=1)
            yvar = np.var(si[nonZero], axis=0, ddof=1)

            xmean = np.mean(fi[nonZero], axis=0)
            ymean = np.mean(si[nonZero], axis=0)

            z = fi[nonZero] + si[nonZero]
            zvar = np.var(z, axis=0, ddof=1)

            covar = 0.5 * (zvar - (xvar + yvar))

            denom = 2 * covar
            num = (yvar - xvar) + np.sqrt((yvar - xvar) * (yvar - xvar) + 4 *
                                          (covar * covar))
            a = (num / denom)
            b = (ymean - a * xmean)

            i = 1
            while i > 0.003921568627:
                thr_fi_c = i
                thr_si_c = (a * i) + b
                combt = (fi < thr_fi_c) | (si < thr_si_c)
                costReg = scistat.pearsonr(fi[combt], si[combt])
                if costReg[0] <= 0:
                    break
                i = i - 0.003921568627

            # Costes' thershold for entire image is applied to each object
            fi_above_thr = first_pixels > thr_fi_c
            si_above_thr = second_pixels > thr_si_c
            combined_thresh_c = fi_above_thr & si_above_thr
            fi_thresh_c = first_pixels[combined_thresh_c]
            si_thresh_c = second_pixels[combined_thresh_c]
            if np.any(fi_above_thr):
                tot_fi_thr_c = scind.sum(
                    first_pixels[first_pixels >= thr_fi_c],
                    labels[first_pixels >= thr_fi_c], lrange)
            else:
                tot_fi_thr_c = np.zeros(len(lrange))
            if np.any(si_above_thr):
                tot_si_thr_c = scind.sum(
                    second_pixels[second_pixels >= thr_si_c],
                    labels[second_pixels >= thr_si_c], lrange)
            else:
                tot_si_thr_c = np.zeros(len(lrange))

            # Manders Coefficient
            M1 = np.zeros(len(lrange))
            M2 = np.zeros(len(lrange))

            if np.any(combined_thresh):
                M1 = np.array(
                    scind.sum(fi_thresh, labels[combined_thresh],
                              lrange)) / np.array(tot_fi_thr)
                M2 = np.array(
                    scind.sum(si_thresh, labels[combined_thresh],
                              lrange)) / np.array(tot_si_thr)
            result += [[
                first_image_name, second_image_name, object_name,
                "Mean Manders coeff",
                "%.3f" % np.mean(M1)
            ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Median Manders coeff",
                           "%.3f" % np.median(M1)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Min Manders coeff",
                           "%.3f" % np.min(M1)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Max Manders coeff",
                           "%.3f" % np.max(M1)
                       ]]
            result += [[
                second_image_name, first_image_name, object_name,
                "Mean Manders coeff",
                "%.3f" % np.mean(M2)
            ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Median Manders coeff",
                           "%.3f" % np.median(M2)
                       ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Min Manders coeff",
                           "%.3f" % np.min(M2)
                       ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Max Manders coeff",
                           "%.3f" % np.max(M2)
                       ]]

            # RWC Coefficient
            RWC1 = np.zeros(len(lrange))
            RWC2 = np.zeros(len(lrange))
            [Rank1] = np.lexsort(([labels], [first_pixels]))
            [Rank2] = np.lexsort(([labels], [second_pixels]))
            Rank1_U = np.hstack(
                [[False], first_pixels[Rank1[:-1]] != first_pixels[Rank1[1:]]])
            Rank2_U = np.hstack(
                [[False],
                 second_pixels[Rank2[:-1]] != second_pixels[Rank2[1:]]])
            Rank1_S = np.cumsum(Rank1_U)
            Rank2_S = np.cumsum(Rank2_U)
            Rank_im1 = np.zeros(first_pixels.shape, dtype=int)
            Rank_im2 = np.zeros(second_pixels.shape, dtype=int)
            Rank_im1[Rank1] = Rank1_S
            Rank_im2[Rank2] = Rank2_S

            R = max(Rank_im1.max(), Rank_im2.max()) + 1
            Di = abs(Rank_im1 - Rank_im2)
            weight = (R - Di) * 1.0 / R
            weight_thresh = weight[combined_thresh]

            if np.any(combined_thresh):
                RWC1 = np.array(
                    scind.sum(fi_thresh * weight_thresh,
                              labels[combined_thresh],
                              lrange)) / np.array(tot_fi_thr)
                RWC2 = np.array(
                    scind.sum(si_thresh * weight_thresh,
                              labels[combined_thresh],
                              lrange)) / np.array(tot_si_thr)

            result += [[
                first_image_name, second_image_name, object_name,
                "Mean RWC coeff",
                "%.3f" % np.mean(RWC1)
            ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Median RWC coeff",
                           "%.3f" % np.median(RWC1)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Min RWC coeff",
                           "%.3f" % np.min(RWC1)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Max RWC coeff",
                           "%.3f" % np.max(RWC1)
                       ]]
            result += [[
                second_image_name, first_image_name, object_name,
                "Mean RWC coeff",
                "%.3f" % np.mean(RWC2)
            ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Median RWC coeff",
                           "%.3f" % np.median(RWC2)
                       ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Min RWC coeff",
                           "%.3f" % np.min(RWC2)
                       ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Max RWC coeff",
                           "%.3f" % np.max(RWC2)
                       ]]

            # Costes Automated Threshold
            C1 = np.zeros(len(lrange))
            C2 = np.zeros(len(lrange))
            if np.any(combined_thresh_c):
                C1 = np.array(
                    scind.sum(fi_thresh_c, labels[combined_thresh_c],
                              lrange)) / np.array(tot_fi_thr_c)
                C2 = np.array(
                    scind.sum(si_thresh_c, labels[combined_thresh_c],
                              lrange)) / np.array(tot_si_thr_c)
            result += [[
                first_image_name, second_image_name, object_name,
                "Mean Manders coeff (Costes)",
                "%.3f" % np.mean(C1)
            ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Median Manders coeff (Costes)",
                           "%.3f" % np.median(C1)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Min Manders coeff (Costes)",
                           "%.3f" % np.min(C1)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Max Manders coeff (Costes)",
                           "%.3f" % np.max(C1)
                       ]]
            result += [[
                second_image_name, first_image_name, object_name,
                "Mean Manders coeff (Costes)",
                "%.3f" % np.mean(C2)
            ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Median Manders coeff (Costes)",
                           "%.3f" % np.median(C2)
                       ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Min Manders coeff (Costes)",
                           "%.3f" % np.min(C2)
                       ],
                       [
                           second_image_name, first_image_name, object_name,
                           "Max Manders coeff (Costes)",
                           "%.3f" % np.max(C2)
                       ]]

            # Overlap Coefficient
            if np.any(combined_thresh):
                fpsq = scind.sum(first_pixels[combined_thresh]**2,
                                 labels[combined_thresh], lrange)
                spsq = scind.sum(second_pixels[combined_thresh]**2,
                                 labels[combined_thresh], lrange)
                pdt = np.sqrt(np.array(fpsq) * np.array(spsq))

                overlap = fix(
                    scind.sum(
                        first_pixels[combined_thresh] *
                        second_pixels[combined_thresh],
                        labels[combined_thresh], lrange) / pdt)
                K1 = fix((scind.sum(
                    first_pixels[combined_thresh] *
                    second_pixels[combined_thresh], labels[combined_thresh],
                    lrange)) / (np.array(fpsq)))
                K2 = fix(
                    scind.sum(
                        first_pixels[combined_thresh] *
                        second_pixels[combined_thresh],
                        labels[combined_thresh], lrange) / np.array(spsq))
            else:
                overlap = K1 = K2 = np.zeros(len(lrange))
            result += [[
                first_image_name, second_image_name, object_name,
                "Mean Overlap coeff",
                "%.3f" % np.mean(overlap)
            ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Median Overlap coeff",
                           "%.3f" % np.median(overlap)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Min Overlap coeff",
                           "%.3f" % np.min(overlap)
                       ],
                       [
                           first_image_name, second_image_name, object_name,
                           "Max Overlap coeff",
                           "%.3f" % np.max(overlap)
                       ]]

        measurement = ("Correlation_Correlation_%s_%s" %
                       (first_image_name, second_image_name))
        overlap_measurement = (F_OVERLAP_FORMAT %
                               (first_image_name, second_image_name))
        k_measurement_1 = (F_K_FORMAT % (first_image_name, second_image_name))
        k_measurement_2 = (F_K_FORMAT % (second_image_name, first_image_name))
        manders_measurement_1 = (F_MANDERS_FORMAT %
                                 (first_image_name, second_image_name))
        manders_measurement_2 = (F_MANDERS_FORMAT %
                                 (second_image_name, first_image_name))
        rwc_measurement_1 = (F_RWC_FORMAT %
                             (first_image_name, second_image_name))
        rwc_measurement_2 = (F_RWC_FORMAT %
                             (second_image_name, first_image_name))
        costes_measurement_1 = (F_COSTES_FORMAT %
                                (first_image_name, second_image_name))
        costes_measurement_2 = (F_COSTES_FORMAT %
                                (second_image_name, first_image_name))

        workspace.measurements.add_measurement(object_name, measurement, corr)
        workspace.measurements.add_measurement(object_name,
                                               overlap_measurement, overlap)
        workspace.measurements.add_measurement(object_name, k_measurement_1,
                                               K1)
        workspace.measurements.add_measurement(object_name, k_measurement_2,
                                               K2)
        workspace.measurements.add_measurement(object_name,
                                               manders_measurement_1, M1)
        workspace.measurements.add_measurement(object_name,
                                               manders_measurement_2, M2)
        workspace.measurements.add_measurement(object_name, rwc_measurement_1,
                                               RWC1)
        workspace.measurements.add_measurement(object_name, rwc_measurement_2,
                                               RWC2)
        workspace.measurements.add_measurement(object_name,
                                               costes_measurement_1, C1)
        workspace.measurements.add_measurement(object_name,
                                               costes_measurement_2, C2)

        if n_objects == 0:
            return [[
                first_image_name, second_image_name, object_name,
                "Mean correlation", "-"
            ],
                    [
                        first_image_name, second_image_name, object_name,
                        "Median correlation", "-"
                    ],
                    [
                        first_image_name, second_image_name, object_name,
                        "Min correlation", "-"
                    ],
                    [
                        first_image_name, second_image_name, object_name,
                        "Max correlation", "-"
                    ]]
        else:
            return result
Example #14
0
 def test_01_01_size_same(self):
     secondary, mask = cpo.size_similarly(np.zeros((10, 20)),
                                          np.zeros((10, 20)))
     self.assertEqual(tuple(secondary.shape), (10, 20))
     self.assertTrue(np.all(mask))
Example #15
0
    def do_measurements(self, workspace, image_name, object_name,
                        center_object_name, center_choice,
                        bin_count_settings, dd):
        '''Perform the radial measurements on the image set

        workspace - workspace that holds images / objects
        image_name - make measurements on this image
        object_name - make measurements on these objects
        center_object_name - use the centers of these related objects as
                      the centers for radial measurements. None to use the
                      objects themselves.
        center_choice - the user's center choice for this object:
                      C_SELF, C_CENTERS_OF_OBJECTS or C_EDGES_OF_OBJECTS.
        bin_count_settings - the bin count settings group
        d - a dictionary for saving reusable partial results

        returns one statistics tuple per ring.
        '''
        assert isinstance(workspace, cpw.Workspace)
        assert isinstance(workspace.object_set, cpo.ObjectSet)
        bin_count = bin_count_settings.bin_count.value
        wants_scaled = bin_count_settings.wants_scaled.value
        maximum_radius = bin_count_settings.maximum_radius.value

        image = workspace.image_set.get_image(image_name,
                                              must_be_grayscale=True)
        objects = workspace.object_set.get_objects(object_name)
        labels, pixel_data = cpo.crop_labels_and_image(objects.segmented,
                                                       image.pixel_data)
        nobjects = np.max(objects.segmented)
        measurements = workspace.measurements
        assert isinstance(measurements, cpmeas.Measurements)
        heatmaps = {}
        for heatmap in self.heatmaps:
            if heatmap.object_name.get_objects_name() == object_name and \
                            image_name == heatmap.image_name.get_image_name() and \
                            heatmap.get_number_of_bins() == bin_count:
                dd[id(heatmap)] = \
                    heatmaps[MEASUREMENT_ALIASES[heatmap.measurement.value]] = \
                    np.zeros(labels.shape)
        if nobjects == 0:
            for bin in range(1, bin_count + 1):
                for feature in (F_FRAC_AT_D, F_MEAN_FRAC, F_RADIAL_CV):
                    feature_name = (
                        (feature + FF_GENERIC) % (image_name, bin, bin_count))
                    measurements.add_measurement(
                            object_name, "_".join([M_CATEGORY, feature_name]),
                            np.zeros(0))
                    if not wants_scaled:
                        measurement_name = "_".join([M_CATEGORY, feature,
                                                     image_name, FF_OVERFLOW])
                        measurements.add_measurement(
                                object_name, measurement_name, np.zeros(0))
            return [(image_name, object_name, "no objects", "-", "-", "-", "-")]
        name = (object_name if center_object_name is None
                else "%s_%s" % (object_name, center_object_name))
        if dd.has_key(name):
            normalized_distance, i_center, j_center, good_mask = dd[name]
        else:
            d_to_edge = distance_to_edge(labels)
            if center_object_name is not None:
                #
                # Use the center of the centering objects to assign a center
                # to each labeled pixel using propagation
                #
                center_objects = workspace.object_set.get_objects(center_object_name)
                center_labels, cmask = cpo.size_similarly(
                        labels, center_objects.segmented)
                pixel_counts = fix(scind.sum(
                        np.ones(center_labels.shape),
                        center_labels,
                        np.arange(1, np.max(center_labels) + 1, dtype=np.int32)))
                good = pixel_counts > 0
                i, j = (centers_of_labels(center_labels) + .5).astype(int)
                ig = i[good]
                jg = j[good]
                lg = np.arange(1, len(i) + 1)[good]
                if center_choice == C_CENTERS_OF_OTHER:
                    #
                    # Reduce the propagation labels to the centers of
                    # the centering objects
                    #
                    center_labels = np.zeros(center_labels.shape, int)
                    center_labels[ig, jg] = lg
                cl, d_from_center = propagate(np.zeros(center_labels.shape),
                                              center_labels,
                                              labels != 0, 1)
                #
                # Erase the centers that fall outside of labels
                #
                cl[labels == 0] = 0
                #
                # If objects are hollow or crescent-shaped, there may be
                # objects without center labels. As a backup, find the
                # center that is the closest to the center of mass.
                #
                missing_mask = (labels != 0) & (cl == 0)
                missing_labels = np.unique(labels[missing_mask])
                if len(missing_labels):
                    all_centers = centers_of_labels(labels)
                    missing_i_centers, missing_j_centers = \
                        all_centers[:, missing_labels - 1]
                    di = missing_i_centers[:, np.newaxis] - ig[np.newaxis, :]
                    dj = missing_j_centers[:, np.newaxis] - jg[np.newaxis, :]
                    missing_best = lg[np.argsort((di * di + dj * dj,))[:, 0]]
                    best = np.zeros(np.max(labels) + 1, int)
                    best[missing_labels] = missing_best
                    cl[missing_mask] = best[labels[missing_mask]]
                    #
                    # Now compute the crow-flies distance to the centers
                    # of these pixels from whatever center was assigned to
                    # the object.
                    #
                    iii, jjj = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]
                    di = iii[missing_mask] - i[cl[missing_mask] - 1]
                    dj = jjj[missing_mask] - j[cl[missing_mask] - 1]
                    d_from_center[missing_mask] = np.sqrt(di * di + dj * dj)
            else:
                # Find the point in each object farthest away from the edge.
                # This does better than the centroid:
                # * The center is within the object
                # * The center tends to be an interesting point, like the
                #   center of the nucleus or the center of one or the other
                #   of two touching cells.
                #
                i, j = maximum_position_of_labels(d_to_edge, labels, objects.indices)
                center_labels = np.zeros(labels.shape, int)
                center_labels[i, j] = labels[i, j]
                #
                # Use the coloring trick here to process touching objects
                # in separate operations
                #
                colors = color_labels(labels)
                ncolors = np.max(colors)
                d_from_center = np.zeros(labels.shape)
                cl = np.zeros(labels.shape, int)
                for color in range(1, ncolors + 1):
                    mask = colors == color
                    l, d = propagate(np.zeros(center_labels.shape),
                                     center_labels,
                                     mask, 1)
                    d_from_center[mask] = d[mask]
                    cl[mask] = l[mask]
            good_mask = cl > 0
            if center_choice == C_EDGES_OF_OTHER:
                # Exclude pixels within the centering objects
                # when performing calculations from the centers
                good_mask = good_mask & (center_labels == 0)
            i_center = np.zeros(cl.shape)
            i_center[good_mask] = i[cl[good_mask] - 1]
            j_center = np.zeros(cl.shape)
            j_center[good_mask] = j[cl[good_mask] - 1]

            normalized_distance = np.zeros(labels.shape)
            if wants_scaled:
                total_distance = d_from_center + d_to_edge
                normalized_distance[good_mask] = (d_from_center[good_mask] /
                                                  (total_distance[good_mask] + .001))
            else:
                normalized_distance[good_mask] = \
                    d_from_center[good_mask] / maximum_radius
            dd[name] = [normalized_distance, i_center, j_center, good_mask]
        ngood_pixels = np.sum(good_mask)
        good_labels = labels[good_mask]
        bin_indexes = (normalized_distance * bin_count).astype(int)
        bin_indexes[bin_indexes > bin_count] = bin_count
        labels_and_bins = (good_labels - 1, bin_indexes[good_mask])
        histogram = coo_matrix((pixel_data[good_mask], labels_and_bins),
                               (nobjects, bin_count + 1)).toarray()
        sum_by_object = np.sum(histogram, 1)
        sum_by_object_per_bin = np.dstack([sum_by_object] * (bin_count + 1))[0]
        fraction_at_distance = histogram / sum_by_object_per_bin
        number_at_distance = coo_matrix((np.ones(ngood_pixels), labels_and_bins),
                                        (nobjects, bin_count + 1)).toarray()
        object_mask = number_at_distance > 0
        sum_by_object = np.sum(number_at_distance, 1)
        sum_by_object_per_bin = np.dstack([sum_by_object] * (bin_count + 1))[0]
        fraction_at_bin = number_at_distance / sum_by_object_per_bin
        mean_pixel_fraction = fraction_at_distance / (fraction_at_bin +
                                                      np.finfo(float).eps)
        masked_fraction_at_distance = masked_array(fraction_at_distance,
                                                   ~object_mask)
        masked_mean_pixel_fraction = masked_array(mean_pixel_fraction,
                                                  ~object_mask)
        # Anisotropy calculation.  Split each cell into eight wedges, then
        # compute coefficient of variation of the wedges' mean intensities
        # in each ring.
        #
        # Compute each pixel's delta from the center object's centroid
        i, j = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]
        imask = i[good_mask] > i_center[good_mask]
        jmask = j[good_mask] > j_center[good_mask]
        absmask = (abs(i[good_mask] - i_center[good_mask]) >
                   abs(j[good_mask] - j_center[good_mask]))
        radial_index = (imask.astype(int) + jmask.astype(int) * 2 +
                        absmask.astype(int) * 4)
        statistics = []

        for bin in range(bin_count + (0 if wants_scaled else 1)):
            bin_mask = (good_mask & (bin_indexes == bin))
            bin_pixels = np.sum(bin_mask)
            bin_labels = labels[bin_mask]
            bin_radial_index = radial_index[bin_indexes[good_mask] == bin]
            labels_and_radii = (bin_labels - 1, bin_radial_index)
            radial_values = coo_matrix((pixel_data[bin_mask],
                                        labels_and_radii),
                                       (nobjects, 8)).toarray()
            pixel_count = coo_matrix((np.ones(bin_pixels), labels_and_radii),
                                     (nobjects, 8)).toarray()
            mask = pixel_count == 0
            radial_means = masked_array(radial_values / pixel_count, mask)
            radial_cv = np.std(radial_means, 1) / np.mean(radial_means, 1)
            radial_cv[np.sum(~mask, 1) == 0] = 0
            for measurement, feature, overflow_feature in (
                    (fraction_at_distance[:, bin], MF_FRAC_AT_D, OF_FRAC_AT_D),
                    (mean_pixel_fraction[:, bin], MF_MEAN_FRAC, OF_MEAN_FRAC),
                    (np.array(radial_cv), MF_RADIAL_CV, OF_RADIAL_CV)):

                if bin == bin_count:
                    measurement_name = overflow_feature % image_name
                else:
                    measurement_name = feature % (image_name, bin + 1, bin_count)
                measurements.add_measurement(object_name,
                                             measurement_name,
                                             measurement)
                if feature in heatmaps:
                    heatmaps[feature][bin_mask] = measurement[bin_labels - 1]
            radial_cv.mask = np.sum(~mask, 1) == 0
            bin_name = str(bin + 1) if bin < bin_count else "Overflow"
            statistics += [(image_name, object_name, bin_name, str(bin_count),
                            round(np.mean(masked_fraction_at_distance[:, bin]), 4),
                            round(np.mean(masked_mean_pixel_fraction[:, bin]), 4),
                            round(np.mean(radial_cv), 4))]
        return statistics
    def run_one_tamura(self, image_name, object_name, workspace):
        """Run, computing the area measurements for a single map of objects"""
        statistics = []
        image = workspace.image_set.get_image(image_name,
                                              must_be_grayscale=True)
        objects = workspace.get_objects(object_name)
        pixel_data = image.pixel_data
        if image.has_mask:
            mask = image.mask
        else:
            mask = None
        labels = objects.segmented
        try:
            pixel_data = objects.crop_image_similarly(pixel_data)
        except ValueError:
            #
            # Recover by cropping the image to the labels
            #
            pixel_data, m1 = cpo.size_similarly(labels, pixel_data)
            if np.any(~m1):
                if mask is None:
                    mask = m1
                else:
                    mask, m2 = cpo.size_similarly(labels, mask)
                    mask[~m2] = False

        if np.all(labels == 0):
            for name in F_ALL:
                statistics += self.record_measurement(
                    workspace, image_name, object_name, "",
                    "%s_%s" % (F_TAMURA, name), np.zeros((0, )))
        else:
            labs = np.unique(labels)
            values = np.zeros([np.max(labs) + 1, 2])
            for l in labs:
                if l != 0:
                    px = pixel_data
                    px[np.where(labels != l)] = 0.0
                    values[l, 0] = self.contrast(px)
                    values[l, 1] = self.directionality(px)
                    statistics += self.record_measurement(
                        workspace, image_name, object_name, "-",
                        "%s_%s" % (F_TAMURA, F_2), values[:, 0])
                    statistics += self.record_measurement(
                        workspace, image_name, object_name, "-",
                        "%s_%s" % (F_TAMURA, F_3), values[:, 1])

            coars = np.zeros([np.max(labs) + 1])
            coars_hist = np.zeros([np.max(labs) + 1, HIST_COARS_BINS])
            for l in labs:
                if l != 0:
                    px = pixel_data
                    px[np.where(labels != l)] = 0.0
                    coars[l], coars_hist[l, :] = self.coarseness(px)
                    statistics += self.record_measurement(
                        workspace, image_name, object_name, "-",
                        "%s_%s" % (F_TAMURA, F_1), coars)
            for b in range(0, HIST_COARS_BINS):
                value = coars_hist[1:, b]
                name = "CoarsenessHist_%dBinsHist_Bin%d" % (HIST_COARS_BINS, b)
                statistics += self.record_measurement(
                    workspace, image_name, object_name, "-",
                    "%s_%s" % (F_TAMURA, name), value)

        return statistics
    def run(self, workspace):
        '''Run the module on the image set'''
        seed_objects_name = self.seed_objects_name.value
        skeleton_name = self.image_name.value
        seed_objects = workspace.object_set.get_objects(seed_objects_name)
        labels = seed_objects.segmented
        labels_count = np.max(labels)
        label_range = np.arange(labels_count, dtype=np.int32) + 1

        skeleton_image = workspace.image_set.get_image(skeleton_name,
                                                       must_be_binary=True)
        skeleton = skeleton_image.pixel_data
        if skeleton_image.has_mask:
            skeleton = skeleton & skeleton_image.mask
        try:
            labels = skeleton_image.crop_image_similarly(labels)
        except:
            labels, m1 = cpo.size_similarly(skeleton, labels)
            labels[~m1] = 0
        #
        # The following code makes a ring around the seed objects with
        # the skeleton trunks sticking out of it.
        #
        # Create a new skeleton with holes at the seed objects
        # First combine the seed objects with the skeleton so
        # that the skeleton trunks come out of the seed objects.
        #
        # Erode the labels once so that all of the trunk branchpoints
        # will be within the labels
        #
        #
        # Dilate the objects, then subtract them to make a ring
        #
        my_disk = morph.strel_disk(1.5).astype(int)
        dilated_labels = grey_dilation(labels, footprint=my_disk)
        seed_mask = dilated_labels > 0
        combined_skel = skeleton | seed_mask

        closed_labels = grey_erosion(dilated_labels, footprint=my_disk)
        seed_center = closed_labels > 0
        combined_skel = combined_skel & (~seed_center)
        #
        # Fill in single holes (but not a one-pixel hole made by
        # a one-pixel image)
        #
        if self.wants_to_fill_holes:

            def size_fn(area, is_object):
                return (~is_object) and (area <= self.maximum_hole_size.value)

            combined_skel = morph.fill_labeled_holes(combined_skel,
                                                     ~seed_center, size_fn)
        #
        # Reskeletonize to make true branchpoints at the ring boundaries
        #
        combined_skel = morph.skeletonize(combined_skel)
        #
        # The skeleton outside of the labels
        #
        outside_skel = combined_skel & (dilated_labels == 0)
        #
        # Associate all skeleton points with seed objects
        #
        dlabels, distance_map = propagate.propagate(np.zeros(labels.shape),
                                                    dilated_labels,
                                                    combined_skel, 1)
        #
        # Get rid of any branchpoints not connected to seeds
        #
        combined_skel[dlabels == 0] = False
        #
        # Find the branchpoints
        #
        branch_points = morph.branchpoints(combined_skel)
        #
        # Odd case: when four branches meet like this, branchpoints are not
        # assigned because they are arbitrary. So assign them.
        #
        # .  .
        #  B.
        #  .B
        # .  .
        #
        odd_case = (combined_skel[:-1, :-1] & combined_skel[1:, :-1]
                    & combined_skel[:-1, 1:] & combined_skel[1, 1])
        branch_points[:-1, :-1][odd_case] = True
        branch_points[1:, 1:][odd_case] = True
        #
        # Find the branching counts for the trunks (# of extra branches
        # emanating from a point other than the line it might be on).
        #
        branching_counts = morph.branchings(combined_skel)
        branching_counts = np.array([0, 0, 0, 1, 2])[branching_counts]
        #
        # Only take branches within 1 of the outside skeleton
        #
        dilated_skel = scind.binary_dilation(outside_skel, morph.eight_connect)
        branching_counts[~dilated_skel] = 0
        #
        # Find the endpoints
        #
        end_points = morph.endpoints(combined_skel)
        #
        # We use two ranges for classification here:
        # * anything within one pixel of the dilated image is a trunk
        # * anything outside of that range is a branch
        #
        nearby_labels = dlabels.copy()
        nearby_labels[distance_map > 1.5] = 0

        outside_labels = dlabels.copy()
        outside_labels[nearby_labels > 0] = 0
        #
        # The trunks are the branchpoints that lie within one pixel of
        # the dilated image.
        #
        if labels_count > 0:
            trunk_counts = fix(
                scind.sum(branching_counts, nearby_labels,
                          label_range)).astype(int)
        else:
            trunk_counts = np.zeros((0, ), int)
        #
        # The branches are the branchpoints that lie outside the seed objects
        #
        if labels_count > 0:
            branch_counts = fix(
                scind.sum(branch_points, outside_labels, label_range))
        else:
            branch_counts = np.zeros((0, ), int)
        #
        # Save the endpoints
        #
        if labels_count > 0:
            end_counts = fix(scind.sum(end_points, outside_labels,
                                       label_range))
        else:
            end_counts = np.zeros((0, ), int)
        #
        # Calculate the distances
        #
        total_distance = morph.skeleton_length(dlabels * outside_skel,
                                               label_range)
        #
        # Save measurements
        #
        m = workspace.measurements
        assert isinstance(m, cpmeas.Measurements)
        feature = "_".join((C_OBJSKELETON, F_NUMBER_TRUNKS, skeleton_name))
        m.add_measurement(seed_objects_name, feature, trunk_counts)
        feature = "_".join(
            (C_OBJSKELETON, F_NUMBER_NON_TRUNK_BRANCHES, skeleton_name))
        m.add_measurement(seed_objects_name, feature, branch_counts)
        feature = "_".join(
            (C_OBJSKELETON, F_NUMBER_BRANCH_ENDS, skeleton_name))
        m.add_measurement(seed_objects_name, feature, end_counts)
        feature = "_".join(
            (C_OBJSKELETON, F_TOTAL_OBJSKELETON_LENGTH, skeleton_name))
        m[seed_objects_name, feature] = total_distance
        #
        # Collect the graph information
        #
        if self.wants_objskeleton_graph:
            trunk_mask = (branching_counts > 0) & (nearby_labels != 0)
            intensity_image = workspace.image_set.get_image(
                self.intensity_image_name.value)
            edge_graph, vertex_graph = self.make_objskeleton_graph(
                combined_skel, dlabels, trunk_mask,
                branch_points & ~trunk_mask, end_points,
                intensity_image.pixel_data)

            image_number = workspace.measurements.image_set_number

            edge_path, vertex_path = self.get_graph_file_paths(
                m, m.image_number)
            workspace.interaction_request(self,
                                          m.image_number,
                                          edge_path,
                                          edge_graph,
                                          vertex_path,
                                          vertex_graph,
                                          headless_ok=True)

            if self.show_window:
                workspace.display_data.edge_graph = edge_graph
                workspace.display_data.vertex_graph = vertex_graph
                workspace.display_data.intensity_image = intensity_image.pixel_data
        #
        # Make the display image
        #
        if self.show_window or self.wants_branchpoint_image:
            branchpoint_image = np.zeros(
                (skeleton.shape[0], skeleton.shape[1], 3))
            trunk_mask = (branching_counts > 0) & (nearby_labels != 0)
            branch_mask = branch_points & (outside_labels != 0)
            end_mask = end_points & (outside_labels != 0)
            branchpoint_image[outside_skel, :] = 1
            branchpoint_image[trunk_mask | branch_mask | end_mask, :] = 0
            branchpoint_image[trunk_mask, 0] = 1
            branchpoint_image[branch_mask, 1] = 1
            branchpoint_image[end_mask, 2] = 1
            branchpoint_image[dilated_labels != 0, :] *= .875
            branchpoint_image[dilated_labels != 0, :] += .1
            if self.show_window:
                workspace.display_data.branchpoint_image = branchpoint_image
            if self.wants_branchpoint_image:
                bi = cpi.Image(branchpoint_image, parent_image=skeleton_image)
                workspace.image_set.add(self.branchpoint_image_name.value, bi)
    def do_measurements(self, workspace, image_name, object_name,
                        center_object_name, center_choice,
                        bin_count_settings, dd):
        '''Perform the radial measurements on the image set

        workspace - workspace that holds images / objects
        image_name - make measurements on this image
        object_name - make measurements on these objects
        center_object_name - use the centers of these related objects as
                      the centers for radial measurements. None to use the
                      objects themselves.
        center_choice - the user's center choice for this object:
                      C_SELF, C_CENTERS_OF_OBJECTS or C_EDGES_OF_OBJECTS.
        bin_count_settings - the bin count settings group
        d - a dictionary for saving reusable partial results

        returns one statistics tuple per ring.
        '''
        assert isinstance(workspace, cpw.Workspace)
        assert isinstance(workspace.object_set, cpo.ObjectSet)
        bin_count = bin_count_settings.bin_count.value
        wants_scaled = bin_count_settings.wants_scaled.value
        maximum_radius = bin_count_settings.maximum_radius.value

        image = workspace.image_set.get_image(image_name,
                                              must_be_grayscale=True)
        objects = workspace.object_set.get_objects(object_name)
        labels, pixel_data = cpo.crop_labels_and_image(objects.segmented,
                                                       image.pixel_data)
        nobjects = np.max(objects.segmented)
        measurements = workspace.measurements
        assert isinstance(measurements, cpmeas.Measurements)
        heatmaps = {}
        for heatmap in self.heatmaps:
            if heatmap.object_name.get_objects_name() == object_name and \
                            image_name == heatmap.image_name.get_image_name() and \
                            heatmap.get_number_of_bins() == bin_count:
                dd[id(heatmap)] = \
                    heatmaps[MEASUREMENT_ALIASES[heatmap.measurement.value]] = \
                    np.zeros(labels.shape)
        if nobjects == 0:
            for bin in range(1, bin_count + 1):
                for feature in (F_FRAC_AT_D, F_MEAN_FRAC, F_RADIAL_CV):
                    feature_name = (
                        (feature + FF_GENERIC) % (image_name, bin, bin_count))
                    measurements.add_measurement(
                            object_name, "_".join([M_CATEGORY, feature_name]),
                            np.zeros(0))
                    if not wants_scaled:
                        measurement_name = "_".join([M_CATEGORY, feature,
                                                     image_name, FF_OVERFLOW])
                        measurements.add_measurement(
                                object_name, measurement_name, np.zeros(0))
            return [(image_name, object_name, "no objects", "-", "-", "-", "-")]
        name = (object_name if center_object_name is None
                else "%s_%s" % (object_name, center_object_name))
        if dd.has_key(name):
            normalized_distance, i_center, j_center, good_mask = dd[name]
        else:
            d_to_edge = distance_to_edge(labels)
            if center_object_name is not None:
                #
                # Use the center of the centering objects to assign a center
                # to each labeled pixel using propagation
                #
                center_objects = workspace.object_set.get_objects(center_object_name)
                center_labels, cmask = cpo.size_similarly(
                        labels, center_objects.segmented)
                pixel_counts = fix(scind.sum(
                        np.ones(center_labels.shape),
                        center_labels,
                        np.arange(1, np.max(center_labels) + 1, dtype=np.int32)))
                good = pixel_counts > 0
                i, j = (centers_of_labels(center_labels) + .5).astype(int)
                ig = i[good]
                jg = j[good]
                lg = np.arange(1, len(i) + 1)[good]
                if center_choice == C_CENTERS_OF_OTHER:
                    #
                    # Reduce the propagation labels to the centers of
                    # the centering objects
                    #
                    center_labels = np.zeros(center_labels.shape, int)
                    center_labels[ig, jg] = lg
                cl, d_from_center = propagate(np.zeros(center_labels.shape),
                                              center_labels,
                                              labels != 0, 1)
                #
                # Erase the centers that fall outside of labels
                #
                cl[labels == 0] = 0
                #
                # If objects are hollow or crescent-shaped, there may be
                # objects without center labels. As a backup, find the
                # center that is the closest to the center of mass.
                #
                missing_mask = (labels != 0) & (cl == 0)
                missing_labels = np.unique(labels[missing_mask])
                if len(missing_labels):
                    all_centers = centers_of_labels(labels)
                    missing_i_centers, missing_j_centers = \
                        all_centers[:, missing_labels - 1]
                    di = missing_i_centers[:, np.newaxis] - ig[np.newaxis, :]
                    dj = missing_j_centers[:, np.newaxis] - jg[np.newaxis, :]
                    missing_best = lg[np.argsort((di * di + dj * dj,))[:, 0]]
                    best = np.zeros(np.max(labels) + 1, int)
                    best[missing_labels] = missing_best
                    cl[missing_mask] = best[labels[missing_mask]]
                    #
                    # Now compute the crow-flies distance to the centers
                    # of these pixels from whatever center was assigned to
                    # the object.
                    #
                    iii, jjj = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]
                    di = iii[missing_mask] - i[cl[missing_mask] - 1]
                    dj = jjj[missing_mask] - j[cl[missing_mask] - 1]
                    d_from_center[missing_mask] = np.sqrt(di * di + dj * dj)
            else:
                # Find the point in each object farthest away from the edge.
                # This does better than the centroid:
                # * The center is within the object
                # * The center tends to be an interesting point, like the
                #   center of the nucleus or the center of one or the other
                #   of two touching cells.
                #
                i, j = maximum_position_of_labels(d_to_edge, labels, objects.indices)
                center_labels = np.zeros(labels.shape, int)
                center_labels[i, j] = labels[i, j]
                #
                # Use the coloring trick here to process touching objects
                # in separate operations
                #
                colors = color_labels(labels)
                ncolors = np.max(colors)
                d_from_center = np.zeros(labels.shape)
                cl = np.zeros(labels.shape, int)
                for color in range(1, ncolors + 1):
                    mask = colors == color
                    l, d = propagate(np.zeros(center_labels.shape),
                                     center_labels,
                                     mask, 1)
                    d_from_center[mask] = d[mask]
                    cl[mask] = l[mask]
            good_mask = cl > 0
            if center_choice == C_EDGES_OF_OTHER:
                # Exclude pixels within the centering objects
                # when performing calculations from the centers
                good_mask = good_mask & (center_labels == 0)
            i_center = np.zeros(cl.shape)
            i_center[good_mask] = i[cl[good_mask] - 1]
            j_center = np.zeros(cl.shape)
            j_center[good_mask] = j[cl[good_mask] - 1]

            normalized_distance = np.zeros(labels.shape)
            if wants_scaled:
                total_distance = d_from_center + d_to_edge
                normalized_distance[good_mask] = (d_from_center[good_mask] /
                                                  (total_distance[good_mask] + .001))
            else:
                normalized_distance[good_mask] = \
                    d_from_center[good_mask] / maximum_radius
            dd[name] = [normalized_distance, i_center, j_center, good_mask]
        ngood_pixels = np.sum(good_mask)
        good_labels = labels[good_mask]
        bin_indexes = (normalized_distance * bin_count).astype(int)
        bin_indexes[bin_indexes > bin_count] = bin_count
        labels_and_bins = (good_labels - 1, bin_indexes[good_mask])
        histogram = coo_matrix((pixel_data[good_mask], labels_and_bins),
                               (nobjects, bin_count + 1)).toarray()
        sum_by_object = np.sum(histogram, 1)
        sum_by_object_per_bin = np.dstack([sum_by_object] * (bin_count + 1))[0]
        fraction_at_distance = histogram / sum_by_object_per_bin
        number_at_distance = coo_matrix((np.ones(ngood_pixels), labels_and_bins),
                                        (nobjects, bin_count + 1)).toarray()
        object_mask = number_at_distance > 0
        sum_by_object = np.sum(number_at_distance, 1)
        sum_by_object_per_bin = np.dstack([sum_by_object] * (bin_count + 1))[0]
        fraction_at_bin = number_at_distance / sum_by_object_per_bin
        mean_pixel_fraction = fraction_at_distance / (fraction_at_bin +
                                                      np.finfo(float).eps)
        masked_fraction_at_distance = masked_array(fraction_at_distance,
                                                   ~object_mask)
        masked_mean_pixel_fraction = masked_array(mean_pixel_fraction,
                                                  ~object_mask)
        # Anisotropy calculation.  Split each cell into eight wedges, then
        # compute coefficient of variation of the wedges' mean intensities
        # in each ring.
        #
        # Compute each pixel's delta from the center object's centroid
        i, j = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]
        imask = i[good_mask] > i_center[good_mask]
        jmask = j[good_mask] > j_center[good_mask]
        absmask = (abs(i[good_mask] - i_center[good_mask]) >
                   abs(j[good_mask] - j_center[good_mask]))
        radial_index = (imask.astype(int) + jmask.astype(int) * 2 +
                        absmask.astype(int) * 4)
        statistics = []

        for bin in range(bin_count + (0 if wants_scaled else 1)):
            bin_mask = (good_mask & (bin_indexes == bin))
            bin_pixels = np.sum(bin_mask)
            bin_labels = labels[bin_mask]
            bin_radial_index = radial_index[bin_indexes[good_mask] == bin]
            labels_and_radii = (bin_labels - 1, bin_radial_index)
            radial_values = coo_matrix((pixel_data[bin_mask],
                                        labels_and_radii),
                                       (nobjects, 8)).toarray()
            pixel_count = coo_matrix((np.ones(bin_pixels), labels_and_radii),
                                     (nobjects, 8)).toarray()
            mask = pixel_count == 0
            radial_means = masked_array(radial_values / pixel_count, mask)
            radial_cv = np.std(radial_means, 1) / np.mean(radial_means, 1)
            radial_cv[np.sum(~mask, 1) == 0] = 0
            for measurement, feature, overflow_feature in (
                    (fraction_at_distance[:, bin], MF_FRAC_AT_D, OF_FRAC_AT_D),
                    (mean_pixel_fraction[:, bin], MF_MEAN_FRAC, OF_MEAN_FRAC),
                    (np.array(radial_cv), MF_RADIAL_CV, OF_RADIAL_CV)):

                if bin == bin_count:
                    measurement_name = overflow_feature % image_name
                else:
                    measurement_name = feature % (image_name, bin + 1, bin_count)
                measurements.add_measurement(object_name,
                                             measurement_name,
                                             measurement)
                if feature in heatmaps:
                    heatmaps[feature][bin_mask] = measurement[bin_labels - 1]
            radial_cv.mask = np.sum(~mask, 1) == 0
            bin_name = str(bin + 1) if bin < bin_count else "Overflow"
            statistics += [(image_name, object_name, bin_name, str(bin_count),
                            round(np.mean(masked_fraction_at_distance[:, bin]), 4),
                            round(np.mean(masked_mean_pixel_fraction[:, bin]), 4),
                            round(np.mean(radial_cv), 4))]
        return statistics
Example #19
0
    def run(self, workspace):
        '''Run the module on the image set'''
        seed_objects_name = self.seed_objects_name.value
        skeleton_name = self.image_name.value
        seed_objects = workspace.object_set.get_objects(seed_objects_name)
        labels = seed_objects.segmented
        labels_count = np.max(labels)
        label_range = np.arange(labels_count, dtype=np.int32) + 1

        skeleton_image = workspace.image_set.get_image(
                skeleton_name, must_be_binary=True)
        skeleton = skeleton_image.pixel_data
        if skeleton_image.has_mask:
            skeleton = skeleton & skeleton_image.mask
        try:
            labels = skeleton_image.crop_image_similarly(labels)
        except:
            labels, m1 = cpo.size_similarly(skeleton, labels)
            labels[~m1] = 0
        #
        # The following code makes a ring around the seed objects with
        # the skeleton trunks sticking out of it.
        #
        # Create a new skeleton with holes at the seed objects
        # First combine the seed objects with the skeleton so
        # that the skeleton trunks come out of the seed objects.
        #
        # Erode the labels once so that all of the trunk branchpoints
        # will be within the labels
        #
        #
        # Dilate the objects, then subtract them to make a ring
        #
        my_disk = morph.strel_disk(1.5).astype(int)
        dilated_labels = grey_dilation(labels, footprint=my_disk)
        seed_mask = dilated_labels > 0
        combined_skel = skeleton | seed_mask

        closed_labels = grey_erosion(dilated_labels,
                                     footprint=my_disk)
        seed_center = closed_labels > 0
        combined_skel = combined_skel & (~seed_center)
        #
        # Fill in single holes (but not a one-pixel hole made by
        # a one-pixel image)
        #
        if self.wants_to_fill_holes:
            def size_fn(area, is_object):
                return (~ is_object) and (area <= self.maximum_hole_size.value)

            combined_skel = morph.fill_labeled_holes(
                    combined_skel, ~seed_center, size_fn)
        #
        # Reskeletonize to make true branchpoints at the ring boundaries
        #
        combined_skel = morph.skeletonize(combined_skel)
        #
        # The skeleton outside of the labels
        #
        outside_skel = combined_skel & (dilated_labels == 0)
        #
        # Associate all skeleton points with seed objects
        #
        dlabels, distance_map = propagate.propagate(np.zeros(labels.shape),
                                                    dilated_labels,
                                                    combined_skel, 1)
        #
        # Get rid of any branchpoints not connected to seeds
        #
        combined_skel[dlabels == 0] = False
        #
        # Find the branchpoints
        #
        branch_points = morph.branchpoints(combined_skel)
        #
        # Odd case: when four branches meet like this, branchpoints are not
        # assigned because they are arbitrary. So assign them.
        #
        # .  .
        #  B.
        #  .B
        # .  .
        #
        odd_case = (combined_skel[:-1, :-1] & combined_skel[1:, :-1] &
                    combined_skel[:-1, 1:] & combined_skel[1, 1])
        branch_points[:-1, :-1][odd_case] = True
        branch_points[1:, 1:][odd_case] = True
        #
        # Find the branching counts for the trunks (# of extra branches
        # eminating from a point other than the line it might be on).
        #
        branching_counts = morph.branchings(combined_skel)
        branching_counts = np.array([0, 0, 0, 1, 2])[branching_counts]
        #
        # Only take branches within 1 of the outside skeleton
        #
        dilated_skel = scind.binary_dilation(outside_skel, morph.eight_connect)
        branching_counts[~dilated_skel] = 0
        #
        # Find the endpoints
        #
        end_points = morph.endpoints(combined_skel)
        #
        # We use two ranges for classification here:
        # * anything within one pixel of the dilated image is a trunk
        # * anything outside of that range is a branch
        #
        nearby_labels = dlabels.copy()
        nearby_labels[distance_map > 1.5] = 0

        outside_labels = dlabels.copy()
        outside_labels[nearby_labels > 0] = 0
        #
        # The trunks are the branchpoints that lie within one pixel of
        # the dilated image.
        #
        if labels_count > 0:
            trunk_counts = fix(scind.sum(branching_counts, nearby_labels,
                                         label_range)).astype(int)
        else:
            trunk_counts = np.zeros((0,), int)
        #
        # The branches are the branchpoints that lie outside the seed objects
        #
        if labels_count > 0:
            branch_counts = fix(scind.sum(branch_points, outside_labels,
                                          label_range))
        else:
            branch_counts = np.zeros((0,), int)
        #
        # Save the endpoints
        #
        if labels_count > 0:
            end_counts = fix(scind.sum(end_points, outside_labels, label_range))
        else:
            end_counts = np.zeros((0,), int)
        #
        # Calculate the distances
        #
        total_distance = morph.skeleton_length(
                dlabels * outside_skel, label_range)
        #
        # Save measurements
        #
        m = workspace.measurements
        assert isinstance(m, cpmeas.Measurements)
        feature = "_".join((C_NEURON, F_NUMBER_TRUNKS, skeleton_name))
        m.add_measurement(seed_objects_name, feature, trunk_counts)
        feature = "_".join((C_NEURON, F_NUMBER_NON_TRUNK_BRANCHES,
                            skeleton_name))
        m.add_measurement(seed_objects_name, feature, branch_counts)
        feature = "_".join((C_NEURON, F_NUMBER_BRANCH_ENDS, skeleton_name))
        m.add_measurement(seed_objects_name, feature, end_counts)
        feature = "_".join((C_NEURON, F_TOTAL_NEURITE_LENGTH, skeleton_name))
        m[seed_objects_name, feature] = total_distance
        #
        # Collect the graph information
        #
        if self.wants_neuron_graph:
            trunk_mask = (branching_counts > 0) & (nearby_labels != 0)
            intensity_image = workspace.image_set.get_image(
                    self.intensity_image_name.value)
            edge_graph, vertex_graph = self.make_neuron_graph(
                    combined_skel, dlabels,
                    trunk_mask,
                    branch_points & ~trunk_mask,
                    end_points,
                    intensity_image.pixel_data)

            image_number = workspace.measurements.image_set_number

            edge_path, vertex_path = self.get_graph_file_paths(m, m.image_number)
            workspace.interaction_request(
                    self, m.image_number, edge_path, edge_graph,
                    vertex_path, vertex_graph, headless_ok=True)

            if self.show_window:
                workspace.display_data.edge_graph = edge_graph
                workspace.display_data.vertex_graph = vertex_graph
                workspace.display_data.intensity_image = intensity_image.pixel_data
        #
        # Make the display image
        #
        if self.show_window or self.wants_branchpoint_image:
            branchpoint_image = np.zeros((skeleton.shape[0],
                                          skeleton.shape[1],
                                          3))
            trunk_mask = (branching_counts > 0) & (nearby_labels != 0)
            branch_mask = branch_points & (outside_labels != 0)
            end_mask = end_points & (outside_labels != 0)
            branchpoint_image[outside_skel, :] = 1
            branchpoint_image[trunk_mask | branch_mask | end_mask, :] = 0
            branchpoint_image[trunk_mask, 0] = 1
            branchpoint_image[branch_mask, 1] = 1
            branchpoint_image[end_mask, 2] = 1
            branchpoint_image[dilated_labels != 0, :] *= .875
            branchpoint_image[dilated_labels != 0, :] += .1
            if self.show_window:
                workspace.display_data.branchpoint_image = branchpoint_image
            if self.wants_branchpoint_image:
                bi = cpi.Image(branchpoint_image,
                               parent_image=skeleton_image)
                workspace.image_set.add(self.branchpoint_image_name.value, bi)