def test_load_filename(): # # Load a file, only specifying the FileName in the CSV # csv_text = (""""Image_FileName_DNA" "%s" """ % test_filename) pipeline, module, filename = make_pipeline(csv_text) assert isinstance(module, cellprofiler.modules.loaddata.LoadData) module.image_directory.dir_choice = cellprofiler_core.setting.ABSOLUTE_FOLDER_NAME module.image_directory.custom_path = test_path m = cellprofiler_core.measurement.Measurements() workspace = cellprofiler_core.workspace.Workspace( pipeline, module, m, cellprofiler_core.object.ObjectSet(), m, cellprofiler_core.image.ImageSetList(), ) assert module.prepare_run(workspace) assert (m.get_measurement(cellprofiler_core.measurement.IMAGE, "FileName_DNA", 1) == test_filename) path = m.get_measurement(cellprofiler_core.measurement.IMAGE, "PathName_DNA", 1) assert path == test_path assert m.get_measurement( cellprofiler_core.measurement.IMAGE, "URL_DNA", 1) == cellprofiler_core.modules.loadimages.pathname2url( os.path.join(test_path, test_filename)) module.prepare_group(workspace, {}, [1]) module.run(workspace) img = workspace.image_set.get_image("DNA", must_be_grayscale=True) assert tuple(img.pixel_data.shape) == test_shape
def test_get_groupings(): """Test the get_groupings method""" dir = os.path.join(tests.modules.example_images_directory(), "ExampleSBSImages") pattern = "Channel1-[0-9]{2}-(?P<ROW>[A-H])-(?P<COL>[0-9]{2})\\.tif" csv_text = '"Image_FileName_Cytoplasm","Image_PathName_Cytoplasm","Metadata_ROW","Metadata_COL"\n' for filename in os.listdir(dir): match = re.match(pattern, filename) if match: csv_text += '"%s","%s","%s","%s"\n' % ( filename, dir, match.group("ROW"), match.group("COL"), ) pipeline, module, filename = make_pipeline(csv_text) assert isinstance(module, cellprofiler.modules.loaddata.LoadText) module.wants_images.value = True module.wants_image_groupings.value = True module.metadata_fields.value = "ROW" image_set_list = cellprofiler_core.image.ImageSetList() measurements = cellprofiler_core.measurement.Measurements() workspace = cellprofiler_core.workspace.Workspace(pipeline, module, None, None, measurements, image_set_list) module.prepare_run(workspace) keys, groupings = module.get_groupings(workspace) assert len(keys) == 1 assert keys[0] == "Metadata_ROW" assert len(groupings) == 8 my_rows = [g[0]["Metadata_ROW"] for g in groupings] my_rows.sort() assert "".join(my_rows) == "ABCDEFGH" for grouping in groupings: row = grouping[0]["Metadata_ROW"] module.prepare_group( cellprofiler_core.workspace.Workspace(pipeline, module, None, None, measurements, image_set_list), grouping[0], grouping[1], ) for image_number in grouping[1]: image_set = image_set_list.get_image_set(image_number - 1) measurements.next_image_set(image_number) workspace = cellprofiler_core.workspace.Workspace( pipeline, module, image_set, cellprofiler_core.object.ObjectSet(), measurements, image_set_list, ) module.run(workspace) provider = image_set.get_image_provider("Cytoplasm") match = re.search(pattern, provider.get_filename()) assert match assert row == match.group("ROW")
def test_load_objects(): r = numpy.random.RandomState() r.seed(1101) labels = r.randint(0, 10, size=(30, 20)).astype(numpy.uint8) handle, name = tempfile.mkstemp(".png") bioformats.write_image(name, labels, bioformats.PT_UINT8) os.close(handle) png_path, png_file = os.path.split(name) sbs_dir = os.path.join(tests.modules.example_images_directory(), "ExampleSBSImages") csv_text = """%s_%s,%s_%s,%s_DNA,%s_DNA %s,%s,Channel2-01-A-01.tif,%s """ % ( cellprofiler_core.measurement.C_OBJECTS_FILE_NAME, OBJECTS_NAME, cellprofiler_core.measurement.C_OBJECTS_PATH_NAME, OBJECTS_NAME, cellprofiler_core.measurement.C_FILE_NAME, cellprofiler_core.measurement.C_PATH_NAME, png_file, png_path, sbs_dir, ) pipeline, module, csv_name = make_pipeline(csv_text) assert isinstance(pipeline, cellprofiler_core.pipeline.Pipeline) assert isinstance(module, cellprofiler.modules.loaddata.LoadData) module.wants_images.value = True try: image_set_list = cellprofiler_core.image.ImageSetList() measurements = cellprofiler_core.measurement.Measurements() workspace = cellprofiler_core.workspace.Workspace( pipeline, module, None, None, measurements, image_set_list) pipeline.prepare_run(workspace) key_names, g = pipeline.get_groupings(workspace) assert len(g) == 1 module.prepare_group(workspace, g[0][0], g[0][1]) image_set = image_set_list.get_image_set(g[0][1][0] - 1) object_set = cellprofiler_core.object.ObjectSet() workspace = cellprofiler_core.workspace.Workspace( pipeline, module, image_set, object_set, measurements, image_set_list) module.run(workspace) objects = object_set.get_objects(OBJECTS_NAME) assert numpy.all(objects.segmented == labels) assert (measurements.get_current_image_measurement( cellprofiler_core.measurement.FF_COUNT % OBJECTS_NAME) == 9) for feature in ( cellprofiler_core.measurement.M_LOCATION_CENTER_X, cellprofiler_core.measurement.M_LOCATION_CENTER_Y, cellprofiler_core.measurement.M_NUMBER_OBJECT_NUMBER, ): value = measurements.get_current_measurement(OBJECTS_NAME, feature) assert len(value) == 9 finally: bioformats.formatreader.clear_image_reader_cache() os.remove(name) os.remove(csv_name)
def test_extra_fields(): # # Regression test of issue #853, extra fields # csv_text = """"Image_URL_DNA" "{cp_logo_url}", "foo" "http:{cp_logo_url_filename}" "bogusurl.png" """.format( **{ "cp_logo_url": tests.modules.cp_logo_url, "cp_logo_url_filename": tests.modules.cp_logo_url_filename, } ) pipeline, module, filename = make_pipeline(csv_text) assert isinstance(module, cellprofiler.modules.loaddata.LoadData) m = cellprofiler_core.measurement.Measurements() workspace = cellprofiler_core.workspace.Workspace( pipeline, module, m, cellprofiler_core.object.ObjectSet(), m, cellprofiler_core.image.ImageSetList(), ) assert module.prepare_run(workspace) assert ( m.get_measurement(cellprofiler_core.measurement.IMAGE, "FileName_DNA", 1) == tests.modules.cp_logo_url_filename ) path = m.get_measurement(cellprofiler_core.measurement.IMAGE, "PathName_DNA", 1) assert path == tests.modules.cp_logo_url_folder assert ( m.get_measurement(cellprofiler_core.measurement.IMAGE, "URL_DNA", 1) == tests.modules.cp_logo_url ) assert ( m[cellprofiler_core.measurement.IMAGE, "FileName_DNA", 2] == tests.modules.cp_logo_url_filename ) assert m[cellprofiler_core.measurement.IMAGE, "PathName_DNA", 2] == "http:" assert m[cellprofiler_core.measurement.IMAGE, "FileName_DNA", 3] == "bogusurl.png" assert m[cellprofiler_core.measurement.IMAGE, "PathName_DNA", 3] == "" module.prepare_group(workspace, {}, [1]) module.run(workspace) img = workspace.image_set.get_image("DNA", must_be_color=True) assert tuple(img.pixel_data.shape) == tests.modules.cp_logo_url_shape
def test_load_default_input_folder(): # Regression test of issue #1365 - load a file from the default # input folder and check that PathName_xxx is absolute csv_text = '''"Image_FileName_DNA","Image_PathName_DNA"\n"%s","%s"''' % ( test_filename, test_path, ) pipeline, module, filename = make_pipeline(csv_text) try: assert isinstance(module, cellprofiler.modules.loaddata.LoadData) module.image_directory.dir_choice = cellprofiler_core.setting.ABSOLUTE_FOLDER_NAME module.image_directory.custom_path = test_path m = cellprofiler_core.measurement.Measurements() workspace = cellprofiler_core.workspace.Workspace( pipeline, module, m, cellprofiler_core.object.ObjectSet(), m, cellprofiler_core.image.ImageSetList(), ) assert module.prepare_run(workspace) assert ( m.get_measurement(cellprofiler_core.measurement.IMAGE, "FileName_DNA", 1) == test_filename ) path_out = m.get_measurement(cellprofiler_core.measurement.IMAGE, "PathName_DNA", 1) assert test_path == path_out assert m.get_measurement( cellprofiler_core.measurement.IMAGE, "URL_DNA", 1 ) == cellprofiler_core.modules.loadimages.pathname2url( os.path.join(test_path, test_filename) ) module.prepare_group(workspace, {}, [1]) module.run(workspace) img = workspace.image_set.get_image("DNA", must_be_grayscale=True) assert tuple(img.pixel_data.shape) == test_shape finally: os.remove(filename)
def run_group_request(self, session_id, message_type, message): """Handle a run-group request message""" pipeline = cellprofiler_core.pipeline.Pipeline() m = cellprofiler_core.measurement.Measurements() image_group = m.hdf5_dict.hdf5_file.create_group("ImageData") if len(message) < 2: self.raise_cellprofiler_exception(session_id, "Missing run request sections") return pipeline_txt = message.pop(0).bytes image_metadata = message.pop(0).bytes n_image_sets = None try: image_metadata = json.loads(image_metadata) channel_names = [] for channel_name, channel_metadata in image_metadata: channel_names.append(channel_name) if len(message) < 1: self.raise_cellprofiler_exception( session_id, "Missing binary data for channel %s" % channel_name) return None, None, None pixel_data = self.decode_image(channel_metadata, message.pop(0).bytes, grouping_allowed=True) if pixel_data.ndim < 3: self.raise_cellprofiler_exception( session_id, "The image for channel %s does not have a Z or T dimension", ) return if n_image_sets is None: n_image_sets = pixel_data.shape[0] elif n_image_sets != pixel_data.shape[0]: self.raise_cellprofiler_exception( session_id, "The images passed have different numbers of Z or T planes", ) return image_group.create_dataset(channel_name, data=pixel_data) except Exception as e: self.raise_cellprofiler_exception(session_id, e.message) return None, None, None try: pipeline.loadtxt(StringIO(pipeline_txt)) except Exception as e: logger.warning( "Failed to load pipeline: sending pipeline exception", exc_info=1) self.raise_pipeline_exception(session_id, str(e)) return image_numbers = numpy.arange(1, n_image_sets + 1) for image_number in image_numbers: m[cellprofiler_core.measurement.IMAGE, cellprofiler_core.measurement.GROUP_NUMBER, image_number, ] = 1 m[cellprofiler_core.measurement.IMAGE, cellprofiler_core.measurement.GROUP_INDEX, image_number, ] = image_number input_modules, other_modules = self.split_pipeline(pipeline) workspace = cellprofiler_core.workspace.Workspace( pipeline, None, m, None, m, None) logger.info("Preparing group") for module in other_modules: module.prepare_group( workspace, dict([("image_number", i) for i in image_numbers]), image_numbers, ) for image_index in range(n_image_sets): object_set = cellprofiler_core.object.ObjectSet() m.next_image_set(image_index + 1) for channel_name in channel_names: dataset = image_group[channel_name] pixel_data = dataset[image_index] m.add(channel_name, cellprofiler_core.image.Image(pixel_data)) for module in other_modules: workspace = cellprofiler_core.workspace.Workspace( pipeline, module, m, object_set, m, None) try: logger.info("Running module # %d: %s" % (module.module_num, module.module_name)) pipeline.run_module(module, workspace) if workspace.disposition in ( cellprofiler_core.workspace.DISPOSITION_SKIP, cellprofiler_core.workspace.DISPOSITION_CANCEL, ): break except Exception as e: msg = 'Encountered error while running module, "%s": %s' % ( module.module_name, e.message, ) logger.warning(msg, exc_info=1) self.raise_cellprofiler_exception(session_id, msg) return else: continue if workspace.disposition == cellprofiler_core.workspace.DISPOSITION_CANCEL: break for module in other_modules: module.post_group( workspace, dict([("image_number", i) for i in image_numbers])) logger.info("Finished group") type_names, feature_dict = self.find_measurements( other_modules, pipeline) double_features = [] double_data = [] float_features = [] float_data = [] int_features = [] int_data = [] string_features = [] string_data = [] metadata = [ double_features, float_features, int_features, string_features ] for object_name, features in list(feature_dict.items()): df = [] double_features.append((object_name, df)) ff = [] float_features.append((object_name, ff)) intf = [] int_features.append((object_name, intf)) sf = [] string_features.append((object_name, sf)) if object_name == cellprofiler_core.measurement.IMAGE: object_counts = [] * n_image_sets else: object_numbers = m[object_name, cellprofiler_core.measurement.OBJECT_NUMBER, image_numbers] object_counts = [len(x) for x in object_numbers] for feature, data_type in features: if data_type == "java.lang.String": continue if not m.has_feature(object_name, feature): data = numpy.zeros(numpy.sum(object_counts)) else: data = m[object_name, feature, image_numbers] temp = [] for i, (di, count) in enumerate(zip(data, object_counts)): if count == 0: continue di = numpy.atleast_1d(di) if len(di) > count: di = di[:count] elif len(di) == count: temp.append(di) else: temp += [di + numpy.zeros(len(di) - count)] if len(temp) > 0: data = numpy.hstack(temp) if type_names[data_type] == "java.lang.Double": df.append((feature, len(data))) if len(data) > 0: double_data.append(data.astype("<f8")) elif type_names[data_type] == "java.lang.Float": ff.append((feature, len(data))) if len(data) > 0: float_data.append(data.astype("<f4")) elif type_names[data_type] == "java.lang.Integer": intf.append((feature, len(data))) if len(data) > 0: int_data.append(data.astype("<i4")) data = numpy.hstack([ numpy.frombuffer( numpy.ascontiguousarray(numpy.hstack(ditem)).data, numpy.uint8) for ditem in (double_data, float_data, int_data) if len(ditem) > 0 ]) data = numpy.ascontiguousarray(data) self.socket.send_multipart([ zmq.Frame(session_id), zmq.Frame(), zmq.Frame(RUN_REPLY_1), zmq.Frame(json.dumps(metadata)), zmq.Frame(data), ])