def heatmap( adata: AnnData, model: _input_model_type, genes: Sequence[str], lineages: Optional[Union[str, Sequence[str]]] = None, backward: bool = False, mode: str = HeatmapMode.LINEAGES.s, time_key: str = "latent_time", time_range: Optional[Union[_time_range_type, List[_time_range_type]]] = None, callback: _callback_type = None, cluster_key: Optional[Union[str, Sequence[str]]] = None, show_absorption_probabilities: bool = False, cluster_genes: bool = False, keep_gene_order: bool = False, scale: bool = True, n_convolve: Optional[int] = 5, show_all_genes: bool = False, cbar: bool = True, lineage_height: float = 0.33, fontsize: Optional[float] = None, xlabel: Optional[str] = None, cmap: mcolors.ListedColormap = cm.viridis, dendrogram: bool = True, return_genes: bool = False, return_models: bool = False, n_jobs: Optional[int] = 1, backend: str = _DEFAULT_BACKEND, show_progress_bar: bool = True, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, **kwargs, ) -> Optional[Union[Dict[str, pd.DataFrame], Tuple[_return_model_type, Dict[ str, pd.DataFrame]]]]: """ Plot a heatmap of smoothed gene expression along specified lineages. Parameters ---------- %(adata)s %(model)s %(genes)s lineages Names of the lineages for which to plot. If `None`, plot all lineages. %(backward)s mode Valid options are: - `{m.LINEAGES.s!r}` - group by ``genes`` for each lineage in ``lineages``. - `{m.GENES.s!r}` - group by ``lineages`` for each gene in ``genes``. time_key Key in ``adata.obs`` where the pseudotime is stored. %(time_ranges)s %(model_callback)s cluster_key Key(s) in ``adata.obs`` containing categorical observations to be plotted on top of the heatmap. Only available when ``mode={m.LINEAGES.s!r}``. show_absorption_probabilities Whether to also plot absorption probabilities alongside the smoothed expression. Only available when ``mode={m.LINEAGES.s!r}``. cluster_genes Whether to cluster genes using :func:`seaborn.clustermap` when ``mode='lineages'``. keep_gene_order Whether to keep the gene order for later lineages after the first was sorted. Only available when ``cluster_genes=False`` and ``mode={m.LINEAGES.s!r}``. scale Whether to normalize the gene expression `0-1` range. n_convolve Size of the convolution window when smoothing absorption probabilities. show_all_genes Whether to show all genes on y-axis. cbar Whether to show the colorbar. lineage_height Height of a bar when ``mode={m.GENES.s!r}``. fontsize Size of the title's font. xlabel Label on the x-axis. If `None`, it is determined based on ``time_key``. cmap Colormap to use when visualizing the smoothed expression. dendrogram Whether to show dendrogram when ``cluster_genes=True``. return_genes Whether to return the sorted or clustered genes. Only available when ``mode={m.LINEAGES.s!r}``. %(return_models)s %(parallel)s %(plotting)s kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`. Returns ------- %(plots_or_returns_models)s :class:`pandas.DataFrame` If ``return_genes=True`` and ``mode={m.LINEAGES.s!r}``, returns :class:`pandas.DataFrame` containing the clustered or sorted genes. """ import seaborn as sns def find_indices(series: pd.Series, values) -> Tuple[Any]: def find_nearest(array: np.ndarray, value: float) -> int: ix = np.searchsorted(array, value, side="left") if ix > 0 and (ix == len(array) or fabs(value - array[ix - 1]) < fabs(value - array[ix])): return ix - 1 return ix series = series[np.argsort(series.values)] return tuple(series[[find_nearest(series.values, v) for v in values]].index) def subset_lineage(lname: str, rng: np.ndarray) -> np.ndarray: time_series = adata.obs[time_key] ixs = find_indices(time_series, rng) lin = adata[ixs, :].obsm[lineage_key][lname] lin = lin.X.copy().squeeze() if n_convolve is not None: lin = convolve(lin, np.ones(n_convolve) / n_convolve, mode="nearest") return lin def create_col_colors(lname: str, rng: np.ndarray) -> Tuple[np.ndarray, Cmap, Norm]: color = adata.obsm[lineage_key][lname].colors[0] lin = subset_lineage(lname, rng) h, _, v = mcolors.rgb_to_hsv(mcolors.to_rgb(color)) end_color = mcolors.hsv_to_rgb([h, 1, v]) lineage_cmap = mcolors.LinearSegmentedColormap.from_list( "lineage_cmap", ["#ffffff", end_color], N=len(rng)) norm = mcolors.Normalize(vmin=np.min(lin), vmax=np.max(lin)) scalar_map = cm.ScalarMappable(cmap=lineage_cmap, norm=norm) return ( np.array([mcolors.to_hex(c) for c in scalar_map.to_rgba(lin)]), lineage_cmap, norm, ) def create_col_categorical_color(cluster_key: str, rng: np.ndarray) -> np.ndarray: if not is_categorical_dtype(adata.obs[cluster_key]): raise TypeError( f"Expected `adata.obs[{cluster_key!r}]` to be categorical, " f"found `{adata.obs[cluster_key].dtype.name!r}`.") color_key = f"{cluster_key}_colors" if color_key not in adata.uns: logg.warning( f"Color key `{color_key!r}` not found in `adata.uns`. Creating new colors" ) colors = _create_categorical_colors( len(adata.obs[cluster_key].cat.categories)) adata.uns[color_key] = colors else: colors = adata.uns[color_key] time_series = adata.obs[time_key] ixs = find_indices(time_series, rng) mapper = dict(zip(adata.obs[cluster_key].cat.categories, colors)) return np.array([ mcolors.to_hex(mapper[v]) for v in adata[ixs, :].obs[cluster_key].values ]) def create_cbar( ax, x_delta: float, cmap: Cmap, norm: Norm, label: Optional[str] = None, ) -> Ax: cax = inset_axes( ax, width="1%", height="100%", loc="lower right", bbox_to_anchor=(x_delta, 0, 1, 1), bbox_transform=ax.transAxes, ) _ = mpl.colorbar.ColorbarBase( cax, cmap=cmap, norm=norm, label=label, ticks=np.linspace(norm.vmin, norm.vmax, 5), ) return cax @valuedispatch def _plot_heatmap(_mode: HeatmapMode) -> Fig: pass @_plot_heatmap.register(HeatmapMode.GENES) def _() -> Tuple[Fig, None]: def color_fill_rec(ax, xs, y1, y2, colors=None, cmap=cmap, **kwargs) -> None: colors = colors if cmap is None else cmap(colors) x = 0 for i, (color, x, y1, y2) in enumerate(zip(colors, xs, y1, y2)): dx = (xs[i + 1] - xs[i]) if i < len(x) else (xs[-1] - xs[-2]) ax.add_patch( plt.Rectangle((x, y1), dx, y2 - y1, color=color, ec=color, **kwargs)) ax.plot(x, y2, lw=0) fig, axes = plt.subplots( nrows=len(genes) + show_absorption_probabilities, figsize=(12, len(genes) + len(lineages) * lineage_height) if figsize is None else figsize, dpi=dpi, constrained_layout=True, ) if not isinstance(axes, Iterable): axes = [axes] axes = np.ravel(axes) if show_absorption_probabilities: data["absorption probability"] = data[next(iter(data.keys()))] for ax, (gene, models) in zip(axes, data.items()): if scale: vmin, vmax = 0, 1 else: c = np.array([m.y_test for m in models.values()]) vmin, vmax = np.nanmin(c), np.nanmax(c) norm = mcolors.Normalize(vmin=vmin, vmax=vmax) ix = 0 ys = [ix] if gene == "absorption probability": norm = mcolors.Normalize(vmin=0, vmax=1) for ln, x in ((ln, m.x_test) for ln, m in models.items()): y = np.ones_like(x) c = subset_lineage(ln, x.squeeze()) color_fill_rec(ax, x, y * ix, y * (ix + lineage_height), colors=norm(c)) ix += lineage_height ys.append(ix) else: for x, c in ((m.x_test, m.y_test) for m in models.values()): y = np.ones_like(x) c = _min_max_scale(c) if scale else c color_fill_rec(ax, x, y * ix, y * (ix + lineage_height), colors=norm(c)) ix += lineage_height ys.append(ix) xs = np.array([m.x_test for m in models.values()]) x_min, x_max = np.min(xs), np.max(xs) ax.set_xticks(np.linspace(x_min, x_max, _N_XTICKS)) ax.set_yticks(np.array(ys[:-1]) + lineage_height / 2) ax.spines["left"].set_position( ("data", 0) ) # move the left spine to the rectangles to get nicer yticks ax.set_yticklabels(models.keys(), ha="right") ax.set_title(gene, fontdict={"fontsize": fontsize}) ax.set_ylabel("lineage") for pos in ["top", "bottom", "left", "right"]: ax.spines[pos].set_visible(False) if cbar: cax, _ = mpl.colorbar.make_axes(ax) _ = mpl.colorbar.ColorbarBase( cax, ticks=np.linspace(vmin, vmax, 5), norm=norm, cmap=cmap, label="value" if gene == "absorption probability" else "scaled expression" if scale else "expression", ) ax.tick_params( top=False, bottom=False, left=True, right=False, labelleft=True, labelbottom=False, ) ax.xaxis.set_major_formatter(FormatStrFormatter("%.3f")) ax.tick_params( top=False, bottom=True, left=True, right=False, labelleft=True, labelbottom=True, ) ax.set_xlabel(xlabel) return fig, None @_plot_heatmap.register(HeatmapMode.LINEAGES) def _() -> Tuple[List[Fig], pd.DataFrame]: data_t = defaultdict(dict) # transpose for gene, lns in data.items(): for ln, y in lns.items(): data_t[ln][gene] = y figs = [] gene_order = None sorted_genes = pd.DataFrame() if return_genes else None for lname, models in data_t.items(): xs = np.array([m.x_test for m in models.values()]) x_min, x_max = np.nanmin(xs), np.nanmax(xs) df = pd.DataFrame([m.y_test for m in models.values()], index=models.keys()) df.index.name = "genes" if not cluster_genes: if gene_order is not None: df = df.loc[gene_order] else: max_sort = np.argsort( np.argmax(df.apply(_min_max_scale, axis=1).values, axis=1)) df = df.iloc[max_sort, :] if keep_gene_order: gene_order = df.index cat_colors = None if cluster_key is not None: cat_colors = np.stack( [ create_col_categorical_color( c, np.linspace(x_min, x_max, df.shape[1])) for c in cluster_key ], axis=0, ) if show_absorption_probabilities: col_colors, col_cmap, col_norm = create_col_colors( lname, np.linspace(x_min, x_max, df.shape[1])) if cat_colors is not None: col_colors = np.vstack([cat_colors, col_colors[None, :]]) else: col_colors, col_cmap, col_norm = cat_colors, None, None row_cluster = cluster_genes and df.shape[0] > 1 show_clust = row_cluster and dendrogram g = sns.clustermap( df, cmap=cmap, figsize=(10, min(len(genes) / 8 + 1, 10)) if figsize is None else figsize, xticklabels=False, row_cluster=row_cluster, col_colors=col_colors, colors_ratio=0, col_cluster=False, cbar_pos=None, yticklabels=show_all_genes or "auto", standard_scale=0 if scale else None, ) if cbar: cax = create_cbar( g.ax_heatmap, 0.1, cmap=cmap, norm=mcolors.Normalize( vmin=0 if scale else np.min(df.values), vmax=1 if scale else np.max(df.values), ), label="scaled expression" if scale else "expression", ) g.fig.add_axes(cax) if col_cmap is not None and col_norm is not None: cax = create_cbar( g.ax_heatmap, 0.25, cmap=col_cmap, norm=col_norm, label="absorption probability", ) g.fig.add_axes(cax) if g.ax_col_colors: main_bbox = _get_ax_bbox(g.fig, g.ax_heatmap) n_bars = show_absorption_probabilities + ( len(cluster_key) if cluster_key is not None else 0) _set_ax_height_to_cm( g.fig, g.ax_col_colors, height=min( 5, max(n_bars * main_bbox.height / len(df), 0.25 * n_bars)), ) g.ax_col_colors.set_title(lname, fontdict={"fontsize": fontsize}) else: g.ax_heatmap.set_title(lname, fontdict={"fontsize": fontsize}) g.ax_col_dendrogram.set_visible( False) # gets rid of top free space g.ax_heatmap.yaxis.tick_left() g.ax_heatmap.yaxis.set_label_position("right") g.ax_heatmap.set_xlabel(xlabel) g.ax_heatmap.set_xticks(np.linspace(0, len(df.columns), _N_XTICKS)) g.ax_heatmap.set_xticklabels( list( map(lambda n: round(n, 3), np.linspace(x_min, x_max, _N_XTICKS)))) if show_clust: # robustly show dendrogram, because gene names can be long g.ax_row_dendrogram.set_visible(True) dendro_box = g.ax_row_dendrogram.get_position() pad = 0.005 bb = g.ax_heatmap.yaxis.get_tightbbox( g.fig.canvas.get_renderer()).transformed( g.fig.transFigure.inverted()) dendro_box.x0 = bb.x0 - dendro_box.width - pad dendro_box.x1 = bb.x0 - pad g.ax_row_dendrogram.set_position(dendro_box) else: g.ax_row_dendrogram.set_visible(False) if return_genes: sorted_genes[lname] = (df.index[g.dendrogram_row.reordered_ind] if hasattr(g, "dendrogram_row") and g.dendrogram_row is not None else df.index) figs.append(g) return figs, sorted_genes mode = HeatmapMode(mode) lineage_key = str(AbsProbKey.BACKWARD if backward else AbsProbKey.FORWARD) if lineage_key not in adata.obsm: raise KeyError( f"Lineages key `{lineage_key!r}` not found in `adata.obsm`.") if lineages is None: lineages = adata.obsm[lineage_key].names elif isinstance(lineages, str): lineages = [lineages] lineages = _unique_order_preserving(lineages) _ = adata.obsm[lineage_key][lineages] if cluster_key is not None: if isinstance(cluster_key, str): cluster_key = [cluster_key] cluster_key = _unique_order_preserving(cluster_key) if isinstance(genes, str): genes = [genes] genes = _unique_order_preserving(genes) _check_collection(adata, genes, "var_names", use_raw=kwargs.get("use_raw", False)) kwargs["backward"] = backward kwargs["time_key"] = time_key models = _create_models(model, genes, lineages) all_models, data, genes, lineages = _fit_bulk( models, _create_callbacks(adata, callback, genes, lineages, **kwargs), genes, lineages, time_range, return_models=True, # always return (better error messages) filter_all_failed=True, parallel_kwargs={ "show_progress_bar": show_progress_bar, "n_jobs": _get_n_cores(n_jobs, len(genes)), "backend": _get_backend(models, backend), }, **kwargs, ) xlabel = time_key if xlabel is None else xlabel logg.debug(f"Plotting `{mode.s!r}` heatmap") fig, genes = _plot_heatmap(mode) if save is not None and fig is not None: if not isinstance(fig, Iterable): save_fig(fig, save) elif len(fig) == 1: save_fig(fig[0], save) else: for ln, f in zip(lineages, fig): save_fig(f, os.path.join(save, f"lineage_{ln}")) if return_genes and mode == HeatmapMode.LINEAGES: return (all_models, genes) if return_models else genes elif return_models: return all_models
def cluster_lineage( adata: AnnData, model: _input_model_type, genes: Sequence[str], lineage: str, backward: bool = False, time_range: _time_range_type = None, clusters: Optional[Sequence[str]] = None, n_points: int = 200, time_key: str = "latent_time", norm: bool = True, recompute: bool = False, callback: _callback_type = None, ncols: int = 3, sharey: Union[str, bool] = False, key: Optional[str] = None, random_state: Optional[int] = None, use_leiden: bool = False, show_progress_bar: bool = True, n_jobs: Optional[int] = 1, backend: str = _DEFAULT_BACKEND, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, pca_kwargs: Dict = MappingProxyType({"svd_solver": "arpack"}), neighbors_kwargs: Dict = MappingProxyType({"use_rep": "X"}), clustering_kwargs: Dict = MappingProxyType({}), return_models: bool = False, **kwargs, ) -> Optional[_return_model_type]: """ Cluster gene expression trends within a lineage and plot the clusters. This function is based on Palantir, see [Setty19]_. It can be used to discover modules of genes that drive development along a given lineage. Consider running this function on a subset of genes which are potential lineage drivers, identified e.g. by running :func:`cellrank.tl.lineage_drivers`. Parameters ---------- %(adata)s %(model)s %(genes)s lineage Name of the lineage for which to cluster the genes. %(backward)s %(time_ranges)s clusters Cluster identifiers to plot. If `None`, all clusters will be considered. Useful when plotting previously computed clusters. n_points Number of points used for prediction. time_key Key in ``adata.obs`` where the pseudotime is stored. norm Whether to z-normalize each trend to have zero mean, unit variance. recompute If `True`, recompute the clustering, otherwise try to find already existing one. %(model_callback)s ncols Number of columns for the plot. sharey Whether to share y-axis across multiple plots. key Key in ``adata.uns`` where to save the results. If `None`, it will be saved as ``lineage_{lineage}_trend`` . random_state Random seed for reproducibility. use_leiden Whether to use :func:`scanpy.tl.leiden` for clustering or :func:`scanpy.tl.louvain`. %(parallel)s %(plotting)s pca_kwargs Keyword arguments for :func:`scanpy.pp.pca`. neighbors_kwargs Keyword arguments for :func:`scanpy.pp.neighbors`. clustering_kwargs Keyword arguments for :func:`scanpy.tl.louvain` or :func:`scanpy.tl.leiden`. %(return_models)s **kwargs: Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`. Returns ------- %(plots_or_returns_models)s Also updates ``adata.uns`` with the following: - ``key`` or ``lineage_{lineage}_trend`` - an :class:`anndata.AnnData` object of shape `(n_genes, n_points)` containing the clustered genes. """ import scanpy as sc from anndata import AnnData as _AnnData lineage_key = str(AbsProbKey.BACKWARD if backward else AbsProbKey.FORWARD) if lineage_key not in adata.obsm: raise KeyError( f"Lineages key `{lineage_key!r}` not found in `adata.obsm`.") _ = adata.obsm[lineage_key][lineage] genes = _unique_order_preserving(genes) _check_collection(adata, genes, "var_names", kwargs.get("use_raw", False)) if key is None: key = f"lineage_{lineage}_trend" if recompute or key not in adata.uns: kwargs["backward"] = backward kwargs["time_key"] = time_key kwargs["n_test_points"] = n_points models = _create_models(model, genes, [lineage]) all_models, models, genes, _ = _fit_bulk( models, _create_callbacks(adata, callback, genes, [lineage], **kwargs), genes, lineage, time_range, return_models=True, # always return (better error messages) filter_all_failed=True, parallel_kwargs={ "show_progress_bar": show_progress_bar, "n_jobs": _get_n_cores(n_jobs, len(genes)), "backend": _get_backend(models, backend), }, **kwargs, ) # `n_genes, n_test_points` trends = np.vstack( [model[lineage].y_test for model in models.values()]).T if norm: logg.debug("Normalizing trends") _ = StandardScaler(copy=False).fit_transform(trends) trends = _AnnData(trends.T) trends.obs_names = genes # sanity check if trends.n_obs != len(genes): raise RuntimeError( f"Expected to find `{len(genes)}` genes, found `{trends.n_obs}`." ) if trends.n_vars != n_points: raise RuntimeError( f"Expected to find `{n_points}` points, found `{trends.n_vars}`." ) random_state = np.random.mtrand.RandomState(random_state).randint( 2**16) pca_kwargs = dict(pca_kwargs) pca_kwargs.setdefault("n_comps", min(50, n_points, len(genes)) - 1) pca_kwargs.setdefault("random_state", random_state) sc.pp.pca(trends, **pca_kwargs) neighbors_kwargs = dict(neighbors_kwargs) neighbors_kwargs.setdefault("random_state", random_state) sc.pp.neighbors(trends, **neighbors_kwargs) clustering_kwargs = dict(clustering_kwargs) clustering_kwargs["key_added"] = "clusters" clustering_kwargs.setdefault("random_state", random_state) try: if use_leiden: sc.tl.leiden(trends, **clustering_kwargs) else: sc.tl.louvain(trends, **clustering_kwargs) except ImportError as e: logg.warning(str(e)) if use_leiden: sc.tl.louvain(trends, **clustering_kwargs) else: sc.tl.leiden(trends, **clustering_kwargs) logg.info(f"Saving data to `adata.uns[{key!r}]`") adata.uns[key] = trends else: all_models = None logg.info(f"Loading data from `adata.uns[{key!r}]`") trends = adata.uns[key] if "clusters" not in trends.obs: raise KeyError( "Unable to find the clustering in `trends.obs['clusters']`.") if clusters is None: clusters = trends.obs["clusters"].cat.categories for c in clusters: if c not in trends.obs["clusters"].cat.categories: raise ValueError( f"Invalid cluster name `{c!r}`. " f"Valid options are `{list(trends.obs['clusters'].cat.categories)}`." ) nrows = int(np.ceil(len(clusters) / ncols)) fig, axes = plt.subplots( nrows, ncols, figsize=(ncols * 10, nrows * 10) if figsize is None else figsize, sharey=sharey, dpi=dpi, ) if not isinstance(axes, Iterable): axes = [axes] axes = np.ravel(axes) j = 0 for j, (ax, c) in enumerate(zip(axes, clusters)): # noqa data = trends[trends.obs["clusters"] == c].X mean, sd = np.mean(data, axis=0), np.var(data, axis=0) sd = np.sqrt(sd) for i in range(data.shape[0]): ax.plot(data[i], color="gray", lw=0.5) ax.plot(mean, lw=2, color="black") ax.plot(mean - sd, lw=1.5, color="black", linestyle="--") ax.plot(mean + sd, lw=1.5, color="black", linestyle="--") ax.fill_between(range(len(mean)), mean - sd, mean + sd, color="black", alpha=0.1) ax.set_title(f"Cluster {c}") ax.set_xticks([]) if not sharey: ax.set_yticks([]) for j in range(j + 1, len(axes)): axes[j].remove() if save is not None: save_fig(fig, save) if return_models: return all_models
def gene_trends( adata: AnnData, model: _input_model_type, genes: Union[str, Sequence[str]], lineages: Optional[Union[str, Sequence[str]]] = None, backward: bool = False, data_key: str = "X", time_key: str = "latent_time", transpose: bool = False, time_range: Optional[Union[_time_range_type, List[_time_range_type]]] = None, callback: _callback_type = None, conf_int: Union[bool, float] = True, same_plot: bool = False, hide_cells: bool = False, perc: Optional[Union[Tuple[float, float], Sequence[Tuple[float, float]]]] = None, lineage_cmap: Optional[matplotlib.colors.ListedColormap] = None, abs_prob_cmap: matplotlib.colors.ListedColormap = cm.viridis, cell_color: Optional[str] = None, cell_alpha: float = 0.6, lineage_alpha: float = 0.2, size: float = 15, lw: float = 2, cbar: bool = True, margins: float = 0.015, sharex: Optional[Union[str, bool]] = None, sharey: Optional[Union[str, bool]] = None, gene_as_title: Optional[bool] = None, legend_loc: Optional[str] = "best", obs_legend_loc: Optional[str] = "best", ncols: int = 2, suptitle: Optional[str] = None, return_models: bool = False, n_jobs: Optional[int] = 1, backend: str = _DEFAULT_BACKEND, show_progress_bar: bool = True, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, plot_kwargs: Mapping = MappingProxyType({}), **kwargs, ) -> Optional[_return_model_type]: """ Plot gene expression trends along lineages. Each lineage is defined via it's lineage weights which we compute using :func:`cellrank.tl.lineages`. This function accepts any model based off :class:`cellrank.ul.models.BaseModel` to fit gene expression, where we take the lineage weights into account in the loss function. Parameters ---------- %(adata)s %(model)s %(genes)s lineages Names of the lineages to plot. If `None`, plot all lineages. %(backward)s data_key Key in ``adata.layers`` or `'X'` for ``adata.X`` where the data is stored. time_key Key in ``adata.obs`` where the pseudotime is stored. %(time_ranges)s transpose If ``same_plot=True``, group the trends by ``lineages`` instead of ``genes``. This enforces ``hide_cells=True``. If ``same_plot=False``, show ``lineages`` in rows and ``genes`` in columns. %(model_callback)s conf_int Whether to compute and show confidence interval. If the :paramref:`model` is :class:`cellrank.ul.models.GAMR`, it can also specify the confidence level, the default is `0.95`. same_plot Whether to plot all lineages for each gene in the same plot. hide_cells If `True`, hide all cells. perc Percentile for colors. Valid values are in interval `[0, 100]`. This can improve visualization. Can be specified individually for each lineage. lineage_cmap Categorical colormap to use when coloring in the lineages. If `None` and ``same_plot``, use the corresponding colors in ``adata.uns``, otherwise use `'black'`. abs_prob_cmap Continuous colormap to use when visualizing the absorption probabilities for each lineage. Only used when ``same_plot=False``. cell_color Key in :attr:`anndata.AnnData.obs` or :attr:`anndata.AnnData.var_names` used for coloring the cells. cell_alpha Alpha channel for cells. lineage_alpha Alpha channel for lineage confidence intervals. size Size of the points. lw Line width of the smoothed values. cbar Whether to show colorbar. Always shown when percentiles for lineages differ. Only used when ``same_plot=False``. margins Margins around the plot. sharex Whether to share x-axis. Valid options are `'row'`, `'col'` or `'none'`. sharey Whether to share y-axis. Valid options are `'row'`, `'col'` or `'none'`. gene_as_title Whether to show gene names as titles instead on y-axis. legend_loc Location of the legend displaying lineages. Only used when `same_plot=True`. obs_legend_loc Location of the legend when ``cell_color`` corresponds to a categorical variable. ncols Number of columns of the plot when plotting multiple genes. Only used when ``same_plot=True``. suptitle Suptitle of the figure. %(return_models)s %(parallel)s %(plotting)s plot_kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.plot`. kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`. Returns ------- %(plots_or_returns_models)s """ if isinstance(genes, str): genes = [genes] genes = _unique_order_preserving(genes) if data_key != "obs": _check_collection(adata, genes, "var_names", use_raw=kwargs.get("use_raw", False)) else: _check_collection(adata, genes, "obs", use_raw=kwargs.get("use_raw", False)) ln_key = str(AbsProbKey.BACKWARD if backward else AbsProbKey.FORWARD) if ln_key not in adata.obsm: raise KeyError(f"Lineages key `{ln_key!r}` not found in `adata.obsm`.") if lineages is None: lineages = adata.obsm[ln_key].names elif isinstance(lineages, str): lineages = [lineages] elif all(ln is None for ln in lineages): # no lineage, all the weights are 1 lineages = [None] cbar = False logg.debug("All lineages are `None`, setting the weights to `1`") lineages = _unique_order_preserving(lineages) if isinstance(time_range, (tuple, float, int, type(None))): time_range = [time_range] * len(lineages) elif len(time_range) != len(lineages): raise ValueError( f"Expected time ranges to be of length `{len(lineages)}`, found `{len(time_range)}`." ) kwargs["time_key"] = time_key kwargs["data_key"] = data_key kwargs["backward"] = backward kwargs["conf_int"] = conf_int # prepare doesnt take or need this models = _create_models(model, genes, lineages) all_models, models, genes, lineages = _fit_bulk( models, _create_callbacks(adata, callback, genes, lineages, **kwargs), genes, lineages, time_range, return_models=True, filter_all_failed=False, parallel_kwargs={ "show_progress_bar": show_progress_bar, "n_jobs": _get_n_cores(n_jobs, len(genes)), "backend": _get_backend(models, backend), }, **kwargs, ) lineages = sorted(lineages) tmp = adata.obsm[ln_key][lineages].colors if lineage_cmap is None and not transpose: lineage_cmap = tmp plot_kwargs = dict(plot_kwargs) plot_kwargs["obs_legend_loc"] = obs_legend_loc if transpose: all_models = pd.DataFrame(all_models).T.to_dict() models = pd.DataFrame(models).T.to_dict() genes, lineages = lineages, genes hide_cells = same_plot or hide_cells else: # information overload otherwise plot_kwargs["lineage_probability"] = False plot_kwargs["lineage_probability_conf_int"] = False tmp = pd.DataFrame(models).T.astype(bool) start_rows = np.argmax(tmp.values, axis=0) end_rows = tmp.shape[0] - np.argmax(tmp[::-1].values, axis=0) - 1 if same_plot: gene_as_title = True if gene_as_title is None else gene_as_title sharex = "all" if sharex is None else sharex if sharey is None: sharey = "row" if plot_kwargs.get("lineage_probability", False) else "none" ncols = len(genes) if ncols >= len(genes) else ncols nrows = int(np.ceil(len(genes) / ncols)) else: gene_as_title = False if gene_as_title is None else gene_as_title sharex = "col" if sharex is None else sharex if sharey is None: sharey = ("row" if not hide_cells or plot_kwargs.get( "lineage_probability", False) else "none") nrows = len(genes) ncols = len(lineages) plot_kwargs = dict(plot_kwargs) if plot_kwargs.get("xlabel", None) is None: plot_kwargs["xlabel"] = time_key fig, axes = plt.subplots( nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, figsize=(6 * ncols, 4 * nrows) if figsize is None else figsize, tight_layout=True, dpi=dpi, ) axes = np.reshape(axes, (nrows, ncols)) cnt = 0 plot_kwargs["obs_legend_loc"] = None if same_plot else obs_legend_loc logg.info("Plotting trends") for row in range(len(axes)): for col in range(len(axes[row])): if cnt >= len(genes): break gene = genes[cnt] if (same_plot and plot_kwargs.get("lineage_probability", False) and transpose): lpc = adata.obsm[ln_key][gene].colors[0] else: lpc = None if same_plot: plot_kwargs["obs_legend_loc"] = (obs_legend_loc if row == 0 and col == len(axes[0]) - 1 else None) _trends_helper( models, gene=gene, lineage_names=lineages, transpose=transpose, same_plot=same_plot, hide_cells=hide_cells, perc=perc, lineage_cmap=lineage_cmap, abs_prob_cmap=abs_prob_cmap, lineage_probability_color=lpc, cell_color=cell_color, alpha=cell_alpha, lineage_alpha=lineage_alpha, size=size, lw=lw, cbar=cbar, margins=margins, sharey=sharey, gene_as_title=gene_as_title, legend_loc=legend_loc, figsize=figsize, fig=fig, axes=axes[row, col] if same_plot else axes[cnt], show_ylabel=col == 0, show_lineage=same_plot or (cnt == start_rows), show_xticks_and_label=((row + 1) * ncols + col >= len(genes)) if same_plot else (cnt == end_rows), **plot_kwargs, ) # plot legend on the 1st plot cnt += 1 if not same_plot: plot_kwargs["obs_legend_loc"] = None if same_plot and (col != ncols): for ax in np.ravel(axes)[cnt:]: ax.remove() fig.suptitle(suptitle, y=1.05) if save is not None: save_fig(fig, save) if return_models: return all_models