def get_load_code(dest, base, bytes, word_type=numpy.uint32, descr=None): from cgen import ( Pointer, POD, Comment, Block, Line, \ Constant, For, Statement) from cgen import dtype_to_ctype copy_dtype = numpy.dtype(word_type) copy_dtype_str = dtype_to_ctype(copy_dtype) code = [] if descr is not None: code.append(Comment(descr)) code.extend([ Block([ Constant(Pointer(POD(copy_dtype, "load_base")), ("(%s *) (%s)" % (copy_dtype_str, base))), For("unsigned word_nr = THREAD_NUM", "word_nr*sizeof(int) < (%s)" % bytes, "word_nr += COALESCING_THREAD_COUNT", Statement("((%s *) (%s))[word_nr] = load_base[word_nr]" % (copy_dtype_str, dest)) ), ]), Line(), ]) return code
def get_cpu_per_element_code(self): from cgen import (Value, Statement, Initializer, While, Comment, Block, For, Line, Pointer) S = Statement return [ # assumes there is more than one coefficient Initializer(Value("cit_type", "el_modes"), "field_it+er.first"), Line(), Comment("zero out reduced_modes"), For("npy_uint32 mode_idx = 0", "mode_idx < max_degree+1", "++mode_idx", S("reduced_modes[mode_idx] = 0")), Line(), Comment("gather modes by degree"), For("npy_uint32 mode_idx = 0", "mode_idx < mode_count", "++mode_idx", S("reduced_modes[mode_degrees_iterator[mode_idx]]" " += el_modes[mode_idx]")), Line(), Comment("perform skyline procedure"), Initializer(Pointer(Value("value_type", "start")), "reduced_modes.get()"), Initializer(Pointer(Value("value_type", "end")), "start+max_degree+1"), Initializer(Value("value_type", "cur_max"), "std::max(*(end-1), *(end-2))"), Line(), While("end != start", Block([ S("--end"), S("*end = std::max(cur_max, *end)"), ])), Line(), Comment("scatter modes by degree"), Initializer(Value("it_type", "tgt_base"), "result_it+er.first"), For("npy_uint32 mode_idx = 0", "mode_idx < mode_count", "++mode_idx", S("tgt_base[mode_idx] = " "reduced_modes[mode_degrees_iterator[mode_idx]]")), ]
def get_value_arg_decl(self, name, shape, dtype, is_written): assert shape == () result = POD(self, dtype, name) if not is_written: from cgen import Const result = Const(result) if self.target.fortran_abi: from cgen import Pointer result = Pointer(result) return result
def make_greet_mod(greeting): from cgen import FunctionBody, FunctionDeclaration, Block, \ Const, Pointer, Value, Statement from codepy.bpl import BoostPythonModule mod = BoostPythonModule() mod.add_function( FunctionBody( FunctionDeclaration(Const(Pointer(Value("char", "greet"))), []), Block([Statement('return "%s"' % greeting)]))) from codepy.toolchain import guess_toolchain return mod.compile(guess_toolchain(), wait_on_error=True)
def get_flux_code(flux_writer): flux_code = Block([]) flux_code.extend([ Initializer(Pointer(Value("face_pair", "fpair")), "data.facepairs+fpair_nr"), Initializer( MaybeUnused(POD(numpy.uint32, "a_index")), "fpair->a_base + tex1Dfetch(tex_index_lists, " "fpair->a_ilist_index + FACEDOF_NR)"), Initializer( MaybeUnused(POD(numpy.uint32, "b_index")), "fpair->b_base + tex1Dfetch(tex_index_lists, " "fpair->b_ilist_index + FACEDOF_NR)"), Line(), flux_writer(), Line(), S("fpair_nr += CONCURRENT_FACES") ]) return flux_code
def make_cuda_kernel(self, discr, dtype, eg): given = discr.given ldis = eg.local_discretization microblocks_per_block = 1 from cgen.cuda import CudaGlobal from cgen import (Module, Value, Include, Typedef, FunctionBody, FunctionDeclaration, Const, Line, POD, LiteralBlock, Define, Pointer) cmod = Module([ Include("pycuda-helpers.hpp"), Line(), Typedef(POD(dtype, "value_type")), Line(), Define("DOFS_PER_EL", given.dofs_per_el()), Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats), Define("VERTICES_PER_EL", ldis.vertex_count()), Define("ELS_PER_MB", given.microblock.elements), Define("MBS_PER_BLOCK", microblocks_per_block), Line(), Define("DOF_IN_MB_IDX", "threadIdx.x"), Define("DOF_IN_EL_IDX", "(DOF_IN_MB_IDX-el_idx_in_mb*DOFS_PER_EL)"), Define("MB_IN_BLOCK_IDX", "threadIdx.y"), Define("BLOCK_IDX", "blockIdx.x"), Define("MB_NUMBER", "(BLOCK_IDX * MBS_PER_BLOCK + MB_IN_BLOCK_IDX)"), Define("BLOCK_DATA", "whole_block[MB_IN_BLOCK_IDX]")] + self.get_cuda_extra_preamble(discr, dtype, eg) + [FunctionBody( CudaGlobal(FunctionDeclaration( Value("void", "elwise_kernel"), [ Pointer(Const(POD(dtype, "field"))), Pointer(POD(dtype, "result")), POD(numpy.uint32, "mb_count"), ])), LiteralBlock(""" int el_idx_in_mb = DOF_IN_MB_IDX / DOFS_PER_EL; if (MB_NUMBER >= mb_count) return; int idx = MB_NUMBER * ALIGNED_DOFS_PER_MB + DOF_IN_MB_IDX; int element_base_idx = ALIGNED_DOFS_PER_MB * MB_IN_BLOCK_IDX + (DOF_IN_MB_IDX / DOFS_PER_EL) * DOFS_PER_EL; int dof_in_element = DOF_IN_MB_IDX-el_idx_in_mb*DOFS_PER_EL; __shared__ value_type whole_block[MBS_PER_BLOCK][ALIGNED_DOFS_PER_MB+1]; int idx_in_block = ALIGNED_DOFS_PER_MB * MB_IN_BLOCK_IDX + DOF_IN_MB_IDX; BLOCK_DATA[idx_in_block] = field[idx]; __syncthreads(); %s result[idx] = node_result; """ % self.get_cuda_code(discr, dtype, eg))) ]) if False: for i, l in enumerate(str(cmod).split("\n")): print i+1, l raw_input() from pycuda.compiler import SourceModule mod = SourceModule( cmod, keep="cuda_keep_kernels" in discr.debug, ) func = mod.get_function("elwise_kernel") func.prepare( "PPI", block=( given.microblock.aligned_floats, microblocks_per_block, 1)) mb_count = len(discr.blocks) * discr.given.microblocks_per_block grid_dim = (mb_count + microblocks_per_block - 1) \ // microblocks_per_block from pytools import Record class KernelInfo(Record): pass return KernelInfo( func=func, grid_dim=grid_dim, mb_count=mb_count)
a_gpu = cuda.to_device(a) b_gpu = cuda.to_device(b) c_gpu = cuda.mem_alloc(a.nbytes) from cgen import FunctionBody, \ FunctionDeclaration, Typedef, POD, Value, \ Pointer, Module, Block, Initializer, Assign from cgen.cuda import CudaGlobal mod = Module([ FunctionBody( CudaGlobal( FunctionDeclaration(Value("void", "add"), arg_decls=[ Pointer(POD(dtype, name)) for name in ["tgt", "op1", "op2"] ])), Block([ Initializer( POD(numpy.int32, "idx"), "threadIdx.x + %d*blockIdx.x" % (block_size * thread_strides)), ] + [ Assign( "tgt[idx+%d]" % (o * block_size), "op1[idx+%d] + op2[idx+%d]" % (o * block_size, o * block_size)) for o in range(thread_strides) ])) ]) mod = SourceModule(mod)
from cgen import FunctionBody, \ FunctionDeclaration, POD, Value, \ Pointer, Module, Block, Initializer, Assign, Const from cgen.opencl import CLKernel, CLGlobal, \ CLRequiredWorkGroupSize mod = Module([ FunctionBody( CLKernel( CLRequiredWorkGroupSize( (local_size, ), FunctionDeclaration(Value("void", "add"), arg_decls=[ CLGlobal( Pointer(Const(POD(dtype, name)))) for name in ["tgt", "op1", "op2"] ]))), Block([ Initializer( POD(numpy.int32, "idx"), "get_local_id(0) + %d * get_group_id(0)" % (local_size * thread_strides)) ] + [ Assign( "tgt[idx+%d]" % (o * local_size), "op1[idx+%d] + op2[idx+%d]" % (o * local_size, o * local_size)) for o in range(thread_strides) ])) ])
def get_kernel(self, diff_op, elgroup, for_benchmark=False): from cgen import \ Pointer, POD, Value, ArrayOf, Const, \ Module, FunctionDeclaration, FunctionBody, Block, \ Comment, Line, Define, Include, \ Initializer, If, For, Statement, Assign from pycuda.tools import dtype_to_ctype from cgen.cuda import CudaShared, CudaGlobal discr = self.discr d = discr.dimensions dims = range(d) plan = self.plan given = plan.given elgroup, = discr.element_groups float_type = given.float_type f_decl = CudaGlobal(FunctionDeclaration(Value("void", "apply_diff_mat_smem"), [Pointer(POD(float_type, "debugbuf")), Pointer(POD(float_type, "field")), ] + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims] )) par = plan.parallelism cmod = Module([ Include("pycuda-helpers.hpp"), ]) if float_type == numpy.float64: cmod.append(Value("texture<fp_tex_double, 1, cudaReadModeElementType>", "diff_rst_mat_tex")) elif float_type == numpy.float32: rst_channels = given.devdata.make_valid_tex_channel_count(d) cmod.append(Value("texture<float%d, 1, cudaReadModeElementType>" % rst_channels, "diff_rst_mat_tex")) else: raise ValueError("unsupported float type: %s" % float_type) # only preimage size variation is supported here assert plan.image_dofs_per_el == given.dofs_per_el() assert plan.aligned_image_dofs_per_microblock == given.microblock.aligned_floats # FIXME: aligned_image_dofs_per_microblock must be divisible # by this, therefore hardcoding for now. chunk_size = 16 cmod.extend([ Line(), Define("DIMENSIONS", discr.dimensions), Define("IMAGE_DOFS_PER_EL", plan.image_dofs_per_el), Define("PREIMAGE_DOFS_PER_EL", plan.preimage_dofs_per_el), Define("ALIGNED_IMAGE_DOFS_PER_MB", plan.aligned_image_dofs_per_microblock), Define("ALIGNED_PREIMAGE_DOFS_PER_MB", plan.aligned_preimage_dofs_per_microblock), Define("ELS_PER_MB", given.microblock.elements), Define("IMAGE_DOFS_PER_MB", "(IMAGE_DOFS_PER_EL*ELS_PER_MB)"), Line(), Define("CHUNK_SIZE", chunk_size), Define("CHUNK_DOF", "threadIdx.x"), Define("PAR_MB_NR", "threadIdx.y"), Define("CHUNK_NR", "threadIdx.z"), Define("IMAGE_MB_DOF", "(CHUNK_NR*CHUNK_SIZE+CHUNK_DOF)"), Define("IMAGE_EL_DOF", "(IMAGE_MB_DOF - mb_el*IMAGE_DOFS_PER_EL)"), Line(), Define("MACROBLOCK_NR", "blockIdx.x"), Line(), Define("PAR_MB_COUNT", par.parallel), Define("INLINE_MB_COUNT", par.inline), Define("SEQ_MB_COUNT", par.serial), Line(), Define("GLOBAL_MB_NR_BASE", "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"), Define("GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE" "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"), Define("GLOBAL_MB_IMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_IMAGE_DOFS_PER_MB)"), Define("GLOBAL_MB_PREIMAGE_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"), Line(), CudaShared( ArrayOf( ArrayOf( ArrayOf( POD(float_type, "smem_field"), "PAR_MB_COUNT"), "INLINE_MB_COUNT"), "ALIGNED_PREIMAGE_DOFS_PER_MB")), Line(), ]) S = Statement f_body = Block([ Initializer(Const(POD(numpy.uint16, "mb_el")), "IMAGE_MB_DOF / IMAGE_DOFS_PER_EL"), Line(), ]) # --------------------------------------------------------------------- def get_load_code(): mb_img_dofs = plan.aligned_image_dofs_per_microblock mb_preimg_dofs = plan.aligned_preimage_dofs_per_microblock preimg_dofs_over_dofs = (mb_preimg_dofs+mb_img_dofs-1) // mb_img_dofs load_code = [] store_code = [] var_num = 0 for load_block in range(preimg_dofs_over_dofs): for inl in range(par.inline): # load and store are split for better pipelining # compiler can't figure that out because of branch var = "tmp%d" % var_num var_num += 1 load_code.append(POD(float_type, var)) block_addr = "%d * ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF" % load_block load_instr = Assign(var, "field[GLOBAL_MB_PREIMAGE_DOF_BASE" " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB" " + %s]" % (inl, block_addr)) store_instr = Assign( "smem_field[PAR_MB_NR][%d][%s]" % (inl, block_addr), var ) if (load_block+1)*mb_img_dofs >= mb_preimg_dofs: cond = "%s < ALIGNED_PREIMAGE_DOFS_PER_MB" % block_addr load_instr = If(cond, load_instr) store_instr = If(cond, store_instr) load_code.append(load_instr) store_code.append(store_instr) return Block(load_code + [Line()] + store_code) def get_scalar_diff_code(): code = [] for inl in range(par.inline): for axis in dims: code.append( Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0)) code.append(Line()) tex_channels = ["x", "y", "z", "w"] store_code = Block() for inl in range(par.inline): for rst_axis in dims: store_code.append(Assign( "drst%d_global[GLOBAL_MB_IMAGE_DOF_BASE + " "%d*ALIGNED_IMAGE_DOFS_PER_MB + IMAGE_MB_DOF]" % (rst_axis, inl), "d%drst%d" % (inl, rst_axis) )) from hedge.backends.cuda.tools import unroll code.extend([ Comment("everybody needs to be done with the old data"), S("__syncthreads()"), Line(), get_load_code(), Line(), Comment("all the new data must be loaded"), S("__syncthreads()"), Line(), ]) if float_type == numpy.float32: code.append(Value("float%d" % rst_channels, "dmat_entries")) code.extend([ POD(float_type, "field_value%d" % inl) for inl in range(par.inline) ]+[Line()]) def unroll_body(j): result = [ Assign("field_value%d" % inl, "smem_field[PAR_MB_NR][%d][mb_el*PREIMAGE_DOFS_PER_EL+%s]" % (inl, j)) for inl in range(par.inline) ] if float_type == numpy.float32: result.append(Assign("dmat_entries", "tex1Dfetch(diff_rst_mat_tex, IMAGE_EL_DOF + %s*IMAGE_DOFS_PER_EL)" % j)) result.extend( S("d%drst%d += dmat_entries.%s * field_value%d" % (inl, axis, tex_channels[axis], inl)) for inl in range(par.inline) for axis in dims) elif float_type == numpy.float64: result.extend( S("d%(inl)drst%(axis)d += " "fp_tex1Dfetch(diff_rst_mat_tex, %(axis)d " "+ DIMENSIONS*(IMAGE_EL_DOF + %(j)d*IMAGE_DOFS_PER_EL))" "* field_value%(inl)d" % { "inl": inl, "axis": axis, "j": j }) for inl in range(par.inline) for axis in dims) else: assert False return result code.append(If("IMAGE_MB_DOF < IMAGE_DOFS_PER_MB", Block(unroll(unroll_body, total_number=plan.preimage_dofs_per_el) +[store_code]))) return code f_body.extend([ For("unsigned short seq_mb_number = 0", "seq_mb_number < SEQ_MB_COUNT", "++seq_mb_number", Block(get_scalar_diff_code()) ) ]) # finish off ---------------------------------------------------------- cmod.append(FunctionBody(f_decl, f_body)) if not for_benchmark and "cuda_dump_kernels" in discr.debug: from hedge.tools import open_unique_debug_file open_unique_debug_file("diff", ".cu").write(str(cmod)) mod = SourceModule(cmod, keep="cuda_keep_kernels" in discr.debug, #options=["--maxrregcount=16"] ) func = mod.get_function("apply_diff_mat_smem") if "cuda_diff" in discr.debug: print "diff: lmem=%d smem=%d regs=%d" % ( func.local_size_bytes, func.shared_size_bytes, func.registers) diff_rst_mat_texref = mod.get_texref("diff_rst_mat_tex") gpu_diffmats = self.gpu_diffmats(diff_op, elgroup) if given.float_type == numpy.float32: gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, rst_channels) elif given.float_type == numpy.float64: gpu_diffmats.bind_to_texref_ext(diff_rst_mat_texref, allow_double_hack=True) else: assert False assert given.microblock.aligned_floats % chunk_size == 0 block = ( chunk_size, plan.parallelism.parallel, given.microblock.aligned_floats//chunk_size) func.prepare( ["PP"] + discr.dimensions*["P"], texrefs=[diff_rst_mat_texref]) return block, func
def get_kernel(self, fdata, ilist_data, for_benchmark): from cgen.cuda import CudaShared, CudaGlobal from pycuda.tools import dtype_to_ctype discr = self.discr given = self.plan.given fplan = self.plan d = discr.dimensions dims = range(d) elgroup, = discr.element_groups float_type = given.float_type f_decl = CudaGlobal( FunctionDeclaration(Value("void", "apply_flux"), [ Pointer(POD(float_type, "debugbuf")), Pointer(POD(numpy.uint8, "gmem_facedata")), ] + [ Pointer(POD(float_type, "gmem_fluxes_on_faces%d" % flux_nr)) for flux_nr in range(len(self.fluxes)) ])) cmod = Module() cmod.append(Include("pycuda-helpers.hpp")) for dep_expr in self.all_deps: cmod.extend([ Value( "texture<%s, 1, cudaReadModeElementType>" % dtype_to_ctype(float_type, with_fp_tex_hack=True), "field%d_tex" % self.dep_to_index[dep_expr]) ]) if fplan.flux_count != len(self.fluxes): from warnings import warn warn( "Flux count in flux execution plan different from actual flux count.\n" "You may want to specify the tune_for= kwarg in the Discretization\n" "constructor.") cmod.extend([ Line(), Typedef(POD(float_type, "value_type")), Line(), flux_header_struct(float_type, discr.dimensions), Line(), face_pair_struct(float_type, discr.dimensions), Line(), Define("DIMENSIONS", discr.dimensions), Define("DOFS_PER_FACE", fplan.dofs_per_face), Define("THREADS_PER_FACE", fplan.threads_per_face()), Line(), Define("CONCURRENT_FACES", fplan.parallel_faces), Define("BLOCK_MB_COUNT", fplan.mbs_per_block), Line(), Define("FACEDOF_NR", "threadIdx.x"), Define("BLOCK_FACE", "threadIdx.y"), Line(), Define("FLUX_COUNT", len(self.fluxes)), Line(), Define("THREAD_NUM", "(FACEDOF_NR + BLOCK_FACE*THREADS_PER_FACE)"), Define("THREAD_COUNT", "(THREADS_PER_FACE*CONCURRENT_FACES)"), Define( "COALESCING_THREAD_COUNT", "(THREAD_COUNT < 0x10 ? THREAD_COUNT : THREAD_COUNT & ~0xf)"), Line(), Define("DATA_BLOCK_SIZE", fdata.block_bytes), Define("ALIGNED_FACE_DOFS_PER_MB", fplan.aligned_face_dofs_per_microblock()), Define("ALIGNED_FACE_DOFS_PER_BLOCK", "(ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT)"), Line(), Define("FOF_BLOCK_BASE", "(blockIdx.x*ALIGNED_FACE_DOFS_PER_BLOCK)"), Line(), ] + ilist_data.code + [ Line(), Value("texture<index_list_entry_t, 1, cudaReadModeElementType>", "tex_index_lists"), Line(), fdata.struct, Line(), CudaShared(Value("flux_data", "data")), ]) if not fplan.direct_store: cmod.extend([ CudaShared( ArrayOf( ArrayOf(POD(float_type, "smem_fluxes_on_faces"), "FLUX_COUNT"), "ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT")), Line(), ]) S = Statement f_body = Block() from hedge.backends.cuda.tools import get_load_code f_body.extend( get_load_code(dest="&data", base="gmem_facedata + blockIdx.x*DATA_BLOCK_SIZE", bytes="sizeof(flux_data)", descr="load face_pair data") + [S("__syncthreads()"), Line()]) def get_flux_code(flux_writer): flux_code = Block([]) flux_code.extend([ Initializer(Pointer(Value("face_pair", "fpair")), "data.facepairs+fpair_nr"), Initializer( MaybeUnused(POD(numpy.uint32, "a_index")), "fpair->a_base + tex1Dfetch(tex_index_lists, " "fpair->a_ilist_index + FACEDOF_NR)"), Initializer( MaybeUnused(POD(numpy.uint32, "b_index")), "fpair->b_base + tex1Dfetch(tex_index_lists, " "fpair->b_ilist_index + FACEDOF_NR)"), Line(), flux_writer(), Line(), S("fpair_nr += CONCURRENT_FACES") ]) return flux_code flux_computation = Block([ Comment("fluxes for dual-sided (intra-block) interior face pairs"), While("fpair_nr < data.header.same_facepairs_end", get_flux_code(lambda: self.write_interior_flux_code(True))), Line(), Comment("work around nvcc assertion failure"), S("fpair_nr+=1"), S("fpair_nr-=1"), Line(), Comment( "fluxes for single-sided (inter-block) interior face pairs"), While("fpair_nr < data.header.diff_facepairs_end", get_flux_code(lambda: self.write_interior_flux_code(False))), Line(), Comment("fluxes for single-sided boundary face pairs"), While( "fpair_nr < data.header.bdry_facepairs_end", get_flux_code( lambda: self.write_boundary_flux_code(for_benchmark))), ]) f_body.extend_log_block("compute the fluxes", [ Initializer(POD(numpy.uint32, "fpair_nr"), "BLOCK_FACE"), If("FACEDOF_NR < DOFS_PER_FACE", flux_computation) ]) if not fplan.direct_store: f_body.extend([Line(), S("__syncthreads()"), Line()]) f_body.extend_log_block( "store fluxes", [ #Assign("debugbuf[blockIdx.x]", "FOF_BLOCK_BASE"), #Assign("debugbuf[0]", "FOF_BLOCK_BASE"), #Assign("debugbuf[0]", "sizeof(face_pair)"), For( "unsigned word_nr = THREAD_NUM", "word_nr < ALIGNED_FACE_DOFS_PER_MB*BLOCK_MB_COUNT", "word_nr += COALESCING_THREAD_COUNT", Block([ Assign( "gmem_fluxes_on_faces%d[FOF_BLOCK_BASE+word_nr]" % flux_nr, "smem_fluxes_on_faces[%d][word_nr]" % flux_nr) for flux_nr in range(len(self.fluxes)) ] #+[If("isnan(smem_fluxes_on_faces[%d][word_nr])" % flux_nr, #Block([ #Assign("debugbuf[blockIdx.x]", "word_nr"), #]) #) #for flux_nr in range(len(self.fluxes))] )) ]) if False: f_body.extend([ Assign("debugbuf[blockIdx.x*96+32+BLOCK_FACE*32+threadIdx.x]", "fpair_nr"), Assign("debugbuf[blockIdx.x*96+16]", "data.header.same_facepairs_end"), Assign("debugbuf[blockIdx.x*96+17]", "data.header.diff_facepairs_end"), Assign("debugbuf[blockIdx.x*96+18]", "data.header.bdry_facepairs_end"), ]) # finish off ---------------------------------------------------------- cmod.append(FunctionBody(f_decl, f_body)) if not for_benchmark and "cuda_dump_kernels" in discr.debug: from hedge.tools import open_unique_debug_file open_unique_debug_file("flux_gather", ".cu").write(str(cmod)) #from pycuda.tools import allow_user_edit mod = SourceModule( #allow_user_edit(cmod, "kernel.cu", "the flux kernel"), cmod, keep="cuda_keep_kernels" in discr.debug) expr_to_texture_map = dict( (dep_expr, mod.get_texref("field%d_tex" % self.dep_to_index[dep_expr])) for dep_expr in self.all_deps) index_list_texref = mod.get_texref("tex_index_lists") index_list_texref.set_address(ilist_data.device_memory, ilist_data.bytes) index_list_texref.set_format( cuda.dtype_to_array_format(ilist_data.type), 1) index_list_texref.set_flags(cuda.TRSF_READ_AS_INTEGER) func = mod.get_function("apply_flux") block = (fplan.threads_per_face(), fplan.parallel_faces, 1) func.prepare( (2 + len(self.fluxes)) * "P", texrefs=expr_to_texture_map.values() + [index_list_texref]) if "cuda_flux" in discr.debug: print "flux: lmem=%d smem=%d regs=%d" % ( func.local_size_bytes, func.shared_size_bytes, func.num_regs) return block, func, expr_to_texture_map
def test_ptr_to_array(): t2 = Pointer(Pointer(ArrayOf(POD(np.float32, "yyy"), 2))) assert str(t2) == "float **yyy[2];"
def get_kernel(self, diff_op_cls, elgroup, for_benchmark=False): from cgen import \ Pointer, POD, Value, ArrayOf, \ Module, FunctionDeclaration, FunctionBody, Block, \ Line, Define, Include, \ Initializer, If, For, Statement, Assign from cgen import dtype_to_ctype from cgen.cuda import CudaShared, CudaGlobal discr = self.discr d = discr.dimensions dims = range(d) given = self.plan.given par = self.plan.parallelism diffmat_data = self.gpu_diffmats(diff_op_cls, elgroup) elgroup, = discr.element_groups float_type = given.float_type f_decl = CudaGlobal( FunctionDeclaration( Value("void", "apply_diff_mat"), [ Pointer(POD(numpy.uint8, "gmem_diff_rst_mat")), #Pointer(POD(float_type, "debugbuf")), ] + [Pointer(POD(float_type, "drst%d_global" % i)) for i in dims])) rst_channels = given.devdata.make_valid_tex_channel_count(d) cmod = Module([ Include("pycuda-helpers.hpp"), Line(), Value( "texture<fp_tex_%s, 1, cudaReadModeElementType>" % dtype_to_ctype(float_type), "field_tex"), Line(), Define("DIMENSIONS", discr.dimensions), Define("DOFS_PER_EL", given.dofs_per_el()), Line(), Define("SEGMENT_DOF", "threadIdx.x"), Define("PAR_MB_NR", "threadIdx.y"), Line(), Define("MB_SEGMENT", "blockIdx.x"), Define("MACROBLOCK_NR", "blockIdx.y"), Line(), Define("DOFS_PER_SEGMENT", self.plan.segment_size), Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()), Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats), Define("ELS_PER_MB", given.microblock.elements), Line(), Define("PAR_MB_COUNT", par.parallel), Define("INLINE_MB_COUNT", par.inline), Define("SEQ_MB_COUNT", par.serial), Line(), Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"), Define("COALESCING_THREAD_COUNT", "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"), Line(), Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"), Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"), Define( "GLOBAL_MB_NR_BASE", "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"), Define( "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE" "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"), Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"), Line(), Define("DIFFMAT_SEGMENT_FLOATS", diffmat_data.block_floats), Define("DIFFMAT_SEGMENT_BYTES", "(DIFFMAT_SEGMENT_FLOATS*%d)" % given.float_size()), Define("DIFFMAT_COLUMNS", diffmat_data.matrix_columns), Line(), CudaShared( ArrayOf(POD(float_type, "smem_diff_rst_mat"), "DIFFMAT_COLUMNS*DOFS_PER_SEGMENT")), Line(), ]) S = Statement f_body = Block() f_body.extend_log_block("calculate responsibility data", [ Initializer(POD(numpy.uint16, "mb_el"), "MB_DOF/DOFS_PER_EL"), ]) from hedge.backends.cuda.tools import get_load_code f_body.extend( get_load_code( dest="smem_diff_rst_mat", base="gmem_diff_rst_mat + MB_SEGMENT*DIFFMAT_SEGMENT_BYTES", bytes="DIFFMAT_SEGMENT_BYTES", descr="load diff mat segment") + [S("__syncthreads()"), Line()]) # --------------------------------------------------------------------- def get_scalar_diff_code(): code = [] for inl in range(par.inline): for axis in dims: code.append( Initializer(POD(float_type, "d%drst%d" % (inl, axis)), 0)) code.append(Line()) def get_mat_entry(row, col, axis): return ("smem_diff_rst_mat[" "%(row)s*DIFFMAT_COLUMNS + %(axis)s*DOFS_PER_EL" " + %(col)s" "]" % { "row": row, "col": col, "axis": axis }) tex_channels = ["x", "y", "z", "w"] from hedge.backends.cuda.tools import unroll code.extend([ POD(float_type, "field_value%d" % inl) for inl in range(par.inline) ] + [Line()] + unroll( lambda j: [ Assign( "field_value%d" % inl, "fp_tex1Dfetch(field_tex, GLOBAL_MB_DOF_BASE + %d*ALIGNED_DOFS_PER_MB " "+ mb_el*DOFS_PER_EL + %s)" % (inl, j)) for inl in range(par.inline) ] + [Line()] + [ S("d%drst%d += %s * field_value%d" % (inl, axis, get_mat_entry("SEGMENT_DOF", j, axis), inl)) for axis in dims for inl in range(par.inline) ] + [Line()], given.dofs_per_el(), self.plan.max_unroll)) store_code = Block() for inl in range(par.inline): for rst_axis in dims: store_code.append( Assign( "drst%d_global[GLOBAL_MB_DOF_BASE" " + %d*ALIGNED_DOFS_PER_MB + MB_DOF]" % (rst_axis, inl), "d%drst%d" % (inl, rst_axis), )) code.append(If("MB_DOF < DOFS_PER_EL*ELS_PER_MB", store_code)) return code f_body.extend([ For("unsigned short seq_mb_number = 0", "seq_mb_number < SEQ_MB_COUNT", "++seq_mb_number", Block(get_scalar_diff_code())) ]) # finish off ---------------------------------------------------------- cmod.append(FunctionBody(f_decl, f_body)) if not for_benchmark and "cuda_dump_kernels" in discr.debug: from hedge.tools import open_unique_debug_file open_unique_debug_file("diff", ".cu").write(str(cmod)) mod = SourceModule( cmod, keep="cuda_keep_kernels" in discr.debug, #options=["--maxrregcount=10"] ) field_texref = mod.get_texref("field_tex") func = mod.get_function("apply_diff_mat") func.prepare(discr.dimensions * [float_type] + ["P"], block=(self.plan.segment_size, par.parallel, 1), texrefs=[field_texref]) if "cuda_diff" in discr.debug: print "diff: lmem=%d smem=%d regs=%d" % ( func.local_size_bytes, func.shared_size_bytes, func.num_regs) return func, field_texref
a_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a) b_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b) c_buf = cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes) from cgen import FunctionBody, \ FunctionDeclaration, Typedef, POD, Value, \ Pointer, Module, Block, Initializer, Assign, Const from cgen.opencl import CLKernel, CLGlobal, \ CLRequiredWorkGroupSize mod = Module([ FunctionBody( CLKernel(CLRequiredWorkGroupSize((local_size,), FunctionDeclaration( Value("void", "add"), arg_decls=[CLGlobal(Pointer(Const(POD(dtype, name)))) for name in ["tgt", "op1", "op2"]]))), Block([ Initializer(POD(numpy.int32, "idx"), "get_local_id(0) + %d * get_group_id(0)" % (local_size*thread_strides)) ]+[ Assign( "tgt[idx+%d]" % (o*local_size), "op1[idx+%d] + op2[idx+%d]" % ( o*local_size, o*local_size)) for o in range(thread_strides)]))]) knl = cl.Program(ctx, str(mod)).build().add
def test_ptr_to_array(): t1 = Pointer(ArrayOf(Pointer(POD(np.float32, "xxx")), 2)) assert str(t1) == "float *((*xxx)[2]);" t2 = Pointer(Pointer(ArrayOf(POD(np.float32, "yyy"), 2))) assert str(t2) == "float **(yyy[2]);"
def get_kernel(self, with_scaling, for_benchmark=False): from cgen import \ Pointer, POD, Value, ArrayOf, \ Module, FunctionDeclaration, FunctionBody, Block, \ Line, Define, Include, \ Initializer, If, For, Statement, Assign, \ ArrayInitializer from cgen import dtype_to_ctype from cgen.cuda import CudaShared, CudaConstant, CudaGlobal discr = self.discr d = discr.dimensions dims = range(d) given = self.plan.given float_type = given.float_type f_decl = CudaGlobal( FunctionDeclaration(Value("void", "apply_el_local_mat_smem_mat"), [ Pointer(POD(float_type, "out_vector")), Pointer(POD(numpy.uint8, "gmem_matrix")), Pointer(POD(float_type, "debugbuf")), POD(numpy.uint32, "microblock_count"), ])) cmod = Module([ Include("pycuda-helpers.hpp"), Line(), Value( "texture<fp_tex_%s, 1, cudaReadModeElementType>" % dtype_to_ctype(float_type), "in_vector_tex"), ]) if with_scaling: cmod.append( Value( "texture<fp_tex_%s, 1, cudaReadModeElementType>" % dtype_to_ctype(float_type), "scaling_tex"), ) par = self.plan.parallelism cmod.extend([ Line(), Define("DIMENSIONS", discr.dimensions), Define("DOFS_PER_EL", given.dofs_per_el()), Define("PREIMAGE_DOFS_PER_EL", self.plan.preimage_dofs_per_el), Line(), Define("SEGMENT_DOF", "threadIdx.x"), Define("PAR_MB_NR", "threadIdx.y"), Line(), Define("MB_SEGMENT", "blockIdx.x"), Define("MACROBLOCK_NR", "blockIdx.y"), Line(), Define("DOFS_PER_SEGMENT", self.plan.segment_size), Define("SEGMENTS_PER_MB", self.plan.segments_per_microblock()), Define("ALIGNED_DOFS_PER_MB", given.microblock.aligned_floats), Define("ALIGNED_PREIMAGE_DOFS_PER_MB", self.plan.aligned_preimage_dofs_per_microblock), Define("MB_EL_COUNT", given.microblock.elements), Line(), Define("PAR_MB_COUNT", par.parallel), Define("INLINE_MB_COUNT", par.inline), Define("SEQ_MB_COUNT", par.serial), Line(), Define("THREAD_NUM", "(SEGMENT_DOF+PAR_MB_NR*DOFS_PER_SEGMENT)"), Define("COALESCING_THREAD_COUNT", "(PAR_MB_COUNT*DOFS_PER_SEGMENT)"), Line(), Define("MB_DOF_BASE", "(MB_SEGMENT*DOFS_PER_SEGMENT)"), Define("MB_DOF", "(MB_DOF_BASE+SEGMENT_DOF)"), Define( "GLOBAL_MB_NR_BASE", "(MACROBLOCK_NR*PAR_MB_COUNT*INLINE_MB_COUNT*SEQ_MB_COUNT)"), Define( "GLOBAL_MB_NR", "(GLOBAL_MB_NR_BASE" "+ (seq_mb_number*PAR_MB_COUNT + PAR_MB_NR)*INLINE_MB_COUNT)"), Define("GLOBAL_MB_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_DOFS_PER_MB)"), Define("GLOBAL_MB_PREIMG_DOF_BASE", "(GLOBAL_MB_NR*ALIGNED_PREIMAGE_DOFS_PER_MB)"), Line(), Define("MATRIX_COLUMNS", self.plan.gpu_matrix_columns()), Define("MATRIX_SEGMENT_FLOATS", self.plan.gpu_matrix_block_floats()), Define("MATRIX_SEGMENT_BYTES", "(MATRIX_SEGMENT_FLOATS*%d)" % given.float_size()), Line(), CudaShared( ArrayOf(POD(float_type, "smem_matrix"), "MATRIX_SEGMENT_FLOATS")), CudaShared( ArrayOf( ArrayOf( ArrayOf(POD(float_type, "dof_buffer"), "PAR_MB_COUNT"), "INLINE_MB_COUNT"), "DOFS_PER_SEGMENT"), ), CudaShared(POD(numpy.uint16, "segment_start_el")), CudaShared(POD(numpy.uint16, "segment_stop_el")), CudaShared(POD(numpy.uint16, "segment_el_count")), Line(), ArrayInitializer( CudaConstant( ArrayOf(POD(numpy.uint32, "segment_start_el_lookup"), "SEGMENTS_PER_MB")), [(chk * self.plan.segment_size) // given.dofs_per_el() for chk in range(self.plan.segments_per_microblock())]), ArrayInitializer( CudaConstant( ArrayOf(POD(numpy.uint32, "segment_stop_el_lookup"), "SEGMENTS_PER_MB")), [ min(given.microblock.elements, (chk * self.plan.segment_size + self.plan.segment_size - 1) // given.dofs_per_el() + 1) for chk in range(self.plan.segments_per_microblock()) ]), ]) S = Statement f_body = Block() f_body.extend_log_block( "calculate this dof's element", [Initializer(POD(numpy.uint8, "mb_el"), "MB_DOF/DOFS_PER_EL")]) if self.plan.use_prefetch_branch: f_body.extend_log_block("calculate segment responsibility data", [ If( "THREAD_NUM==0", Block([ Assign("segment_start_el", "segment_start_el_lookup[MB_SEGMENT]"), Assign("segment_stop_el", "segment_stop_el_lookup[MB_SEGMENT]"), Assign("segment_el_count", "segment_stop_el-segment_start_el"), ])), S("__syncthreads()") ]) from hedge.backends.cuda.tools import get_load_code f_body.extend( get_load_code(dest="smem_matrix", base=( "gmem_matrix + MB_SEGMENT*MATRIX_SEGMENT_BYTES"), bytes="MATRIX_SEGMENT_BYTES", descr="load matrix segment") + [S("__syncthreads()")]) # --------------------------------------------------------------------- def get_batched_fetch_mat_mul_code(el_fetch_count): result = [] dofs = range(self.plan.preimage_dofs_per_el) for load_segment_start in range(0, self.plan.preimage_dofs_per_el, self.plan.segment_size): result.extend([S("__syncthreads()")] + [ Assign( "dof_buffer[PAR_MB_NR][%d][SEGMENT_DOF]" % inl, "fp_tex1Dfetch(in_vector_tex, " "GLOBAL_MB_PREIMG_DOF_BASE" " + %d*ALIGNED_PREIMAGE_DOFS_PER_MB" " + (segment_start_el)*PREIMAGE_DOFS_PER_EL + %d + SEGMENT_DOF)" % (inl, load_segment_start)) for inl in range(par.inline) ] + [ S("__syncthreads()"), Line(), ]) for dof in dofs[load_segment_start:load_segment_start + self.plan.segment_size]: for inl in range(par.inline): result.append( S("result%d += " "smem_matrix[SEGMENT_DOF*MATRIX_COLUMNS + %d]" "*" "dof_buffer[PAR_MB_NR][%d][%d]" % (inl, dof, inl, dof - load_segment_start))) result.append(Line()) return result from hedge.backends.cuda.tools import unroll def get_direct_tex_mat_mul_code(): return ( [POD(float_type, "fof%d" % inl) for inl in range(par.inline)] + [POD(float_type, "lm"), Line()] + unroll( lambda j: [ Assign( "fof%d" % inl, "fp_tex1Dfetch(in_vector_tex, " "GLOBAL_MB_PREIMG_DOF_BASE" " + %(inl)d * ALIGNED_PREIMAGE_DOFS_PER_MB" " + mb_el*PREIMAGE_DOFS_PER_EL+%(j)s)" % { "j": j, "inl": inl, "row": "SEGMENT_DOF" }, ) for inl in range(par.inline) ] + [ Assign( "lm", "smem_matrix[" "%(row)s*MATRIX_COLUMNS + %(j)s]" % { "j": j, "row": "SEGMENT_DOF" }, ) ] + [ S("result%(inl)d += fof%(inl)d*lm" % {"inl": inl}) for inl in range(par.inline) ], total_number=self.plan.preimage_dofs_per_el, max_unroll=self.plan.max_unroll) + [Line()]) def get_mat_mul_code(el_fetch_count): if el_fetch_count == 1: return get_batched_fetch_mat_mul_code(el_fetch_count) else: return get_direct_tex_mat_mul_code() def mat_mul_outer_loop(fetch_count): if with_scaling: inv_jac_multiplier = ( "fp_tex1Dfetch(scaling_tex," "(GLOBAL_MB_NR + %(inl)d)*MB_EL_COUNT + mb_el)") else: inv_jac_multiplier = "1" write_condition = "MB_DOF < DOFS_PER_EL*MB_EL_COUNT" if self.with_index_check: write_condition += " && GLOBAL_MB_NR < microblock_count" return For( "unsigned short seq_mb_number = 0", "seq_mb_number < SEQ_MB_COUNT", "++seq_mb_number", Block([ Initializer(POD(float_type, "result%d" % inl), 0) for inl in range(par.inline) ] + [Line()] + get_mat_mul_code(fetch_count) + [ If( write_condition, Block([ Assign( "out_vector[GLOBAL_MB_DOF_BASE" " + %d*ALIGNED_DOFS_PER_MB" " + MB_DOF]" % inl, "result%d * %s" % (inl, (inv_jac_multiplier % { "inl": inl }))) for inl in range(par.inline) ])) ])) if self.plan.use_prefetch_branch: from cgen import make_multiple_ifs f_body.append( make_multiple_ifs([ ("segment_el_count == %d" % fetch_count, mat_mul_outer_loop(fetch_count)) for fetch_count in range( 1, self.plan.max_elements_touched_by_segment() + 1) ])) else: f_body.append(mat_mul_outer_loop(0)) # finish off ---------------------------------------------------------- cmod.append(FunctionBody(f_decl, f_body)) if not for_benchmark and "cuda_dump_kernels" in discr.debug: from hedge.tools import open_unique_debug_file open_unique_debug_file(self.plan.debug_name, ".cu").write(str(cmod)) mod = SourceModule( cmod, keep="cuda_keep_kernels" in discr.debug, #options=["--maxrregcount=12"] ) func = mod.get_function("apply_el_local_mat_smem_mat") if self.plan.debug_name in discr.debug: print "%s: lmem=%d smem=%d regs=%d" % ( self.plan.debug_name, func.local_size_bytes, func.shared_size_bytes, func.num_regs) in_vector_texref = mod.get_texref("in_vector_tex") texrefs = [in_vector_texref] if with_scaling: scaling_texref = mod.get_texref("scaling_tex") texrefs.append(scaling_texref) else: scaling_texref = None func.prepare("PPPI", block=(self.plan.segment_size, self.plan.parallelism.parallel, 1), texrefs=texrefs) return func, in_vector_texref, scaling_texref