Example #1
0
 def draw_colorbar(self):
     scatplot=self.scatplot
     cmap_renderer = scatplot.plots["my_plot"][0]
     selection = ColormappedSelectionOverlay(cmap_renderer, fade_alpha=0.35, 
                                             selection_type="range")
     cmap_renderer.overlays.append(selection)
     if self.thresh is not None:
         cmap_renderer.color_data.metadata['selections']=self.thresh
         cmap_renderer.color_data.metadata_changed={'selections':self.thresh}
     # Create the colorbar, handing in the appropriate range and colormap
     colormap=scatplot.color_mapper
     colorbar = ColorBar(index_mapper=LinearMapper(range=DataRange1D(low = 0.0,
                                    high = 1.0)),
                     orientation='v',
                     resizable='v',
                     width=30,
                     padding=20)
     colorbar_selection=RangeSelection(component=colorbar)
     colorbar.tools.append(colorbar_selection)
     ovr=colorbar.overlays.append(RangeSelectionOverlay(component=colorbar,
                                                border_color="white",
                                                alpha=0.8,
                                                fill_color="lightgray",
                                                metadata_name='selections'))
     #ipshell('colorbar, colorbar_selection and ovr available:')
     self.cbar_selection=colorbar_selection
     self.cmap_renderer=cmap_renderer
     colorbar.plot = cmap_renderer
     colorbar.padding_top = scatplot.padding_top
     colorbar.padding_bottom = scatplot.padding_bottom
     self.colorbar=colorbar
     return colorbar
Example #2
0
def create_colorbar(plt):
    colormap = plt.color_mapper
    colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                        color_mapper=colormap,
                        orientation='v',
                        resizable='v',
                        width=30,
                        padding=20)
    colorbar.plot = plt
    return colorbar
Example #3
0
def create_colorbar(plt):
    colormap = plt.color_mapper
    colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                        color_mapper=colormap,
                        orientation='v',
                        resizable='v',
                        width=30,
                        padding=20)
    colorbar.plot = plt
    return colorbar
Example #4
0
def _create_plot_component():

    # Create some data
    numpts = 1000
    x = sort(random(numpts))
    y = random(numpts)
    color = exp(-(x**2 + y**2))

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)
    pd.set_data("color", color)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value", "color"),
              type="cmap_scatter",
              name="my_plot",
              color_mapper=gist_earth,
              marker="square",
              fill_alpha=0.5,
              marker_size=8,
              outline_color="black",
              border_visible=True,
              bgcolor="white")

    # Tweak some of the plot properties
    plot.title = "Colormapped Scatter Plot with Pan/Zoom Color Bar"
    plot.padding = 50
    plot.x_grid.visible = False
    plot.y_grid.visible = False
    plot.x_axis.font = "modern 16"
    plot.y_axis.font = "modern 16"

    # Add pan and zoom to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    zoom = ZoomTool(plot)
    plot.overlays.append(zoom)

    # Create the colorbar, handing in the appropriate range and colormap
    colorbar = ColorBar(
        index_mapper=LinearMapper(range=plot.color_mapper.range),
        color_mapper=plot.color_mapper,
        orientation='v',
        resizable='v',
        width=30,
        padding=20)
    colorbar.plot = plot
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    # Add pan and zoom tools to the colorbar
    colorbar.tools.append(
        PanTool(colorbar, constrain_direction="y", constrain=True))
    zoom_overlay = ZoomTool(colorbar,
                            axis="index",
                            tool_mode="range",
                            always_on=True,
                            drag_button="right")
    colorbar.overlays.append(zoom_overlay)

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(plot,
                               colorbar,
                               use_backbuffer=True,
                               bgcolor="lightgray")

    return container
Example #5
0
    def create_plot_component(self):# Create a scalar field to colormap
        # Create the plot
        self.pd = ArrayPlotData()
        self.pd.set_data("imagedata", self.fxydata())
        plot = Plot(self.pd)
        cmap = default_colormaps.color_map_name_dict[self.colormap]
        if self.rev_cmap:
            cmap = default_colormaps.reverse(cmap)
        img_plot = plot.img_plot("imagedata",
                                 xbounds = self.xbounds,
                                 ybounds = self.ybounds,
                                 colormap=cmap,

                                 )[0]

        # Tweak some of the plot properties
        plot.title = self.title
        plot.padding = 50

        # Attach some tools to the plot
        #plot.tools.append(PanTool(plot))
        #zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
        #plot.overlays.append(zoom)

        csr = CursorTool(img_plot,
                          drag_button='left',
                          color='white',
                          line_width=2.0
                          )
        self.cursor = csr

        csr.current_position = np.mean(self.xbounds), np.mean(self.ybounds)
        img_plot.overlays.append(csr)

        imgtool = ImageInspectorTool(img_plot)
        img_plot.tools.append(imgtool)

        overlay = ImageInspectorOverlay(component=img_plot, image_inspector=imgtool,
                                        bgcolor="white", border_visible=True,)

        #img_plot.overlays.append(overlay)
        colorbar = ColorBar(index_mapper=LinearMapper(range=plot.color_mapper.range),
                            color_mapper=plot.color_mapper,
                            orientation='v',
                            resizable='v',
                            width=30,
                            padding=20)
        colorbar.plot = plot
        colorbar.padding_top = plot.padding_top + 10
        colorbar.padding_bottom = plot.padding_bottom

        # Add pan and zoom tools to the colorbar
        colorbar.tools.append(PanTool(colorbar, constrain_direction="y", constrain=True))
        zoom_overlay = ZoomTool(colorbar, axis="index", tool_mode="range",
                                always_on=True, drag_button="right")
        colorbar.overlays.append(zoom_overlay)

        # Create a container to position the plot and the colorbar side-by-side
        container = HPlotContainer(plot, colorbar, use_backbuffer=True, bgcolor="transparent",)
        container.overlays.append(overlay)
        #self.plot = plot
        self.plot = container
Example #6
0
def _create_plot_component():

    # Create some data
    numpts = 500
    x1 = random(numpts)
    y1 = random(numpts)
    x2 = x1 + standard_normal(numpts) * 0.05
    y2 = y1 + standard_normal(numpts) * 0.05
    color = exp(-(x1**2 + y2**2))
    widths = random(numpts)

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", column_stack([x1, x2]).reshape(-1))
    pd.set_data("value", column_stack([y1, y2]).reshape(-1))
    pd.set_data("color", color)
    pd.set_data("widths", widths)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value", "color", "widths"),
              type="cmap_segment",
              name="my_plot",
              color_mapper=viridis,
              border_visible=True,
              render_style='cubic',
              bgcolor="white",
              size_min=0.5,
              size_max=5.0)

    # Tweak some of the plot properties
    plot.title = "Colormapped Segment Plot with variable widths"
    plot.padding = 50
    plot.x_grid.visible = False
    plot.y_grid.visible = False
    plot.x_axis.font = "modern 16"
    plot.y_axis.font = "modern 16"

    # Right now, some of the tools are a little invasive, and we need the
    # actual ColomappedSegmentPlot object to give to them
    cmap_renderer = plot.plots["my_plot"][0]

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    # Create the colorbar, handing in the appropriate range and colormap
    colorbar = ColorBar(
        index_mapper=LinearMapper(range=plot.color_mapper.range),
        color_mapper=plot.color_mapper,
        orientation='v',
        resizable='v',
        width=30,
        padding=20)
    colorbar.plot = cmap_renderer
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(use_backbuffer=True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "lightgray"
    return container
Example #7
0
def _create_plot_component():

    # Create some data
    numpts = 1000
    x = sort(random(numpts))
    y = random(numpts)
    color = exp(-(x**2 + y**2))

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)
    pd.set_data("color", color)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value", "color"),
              type="cmap_scatter",
              name="my_plot",
              color_mapper=gist_earth,
              marker = "square",
              fill_alpha = 0.5,
              marker_size = 8,
              outline_color = "black",
              border_visible = True,
              bgcolor = "white")

    # Tweak some of the plot properties
    plot.title = "Colormapped Scatter Plot with Pan/Zoom Color Bar"
    plot.padding = 50
    plot.x_grid.visible = False
    plot.y_grid.visible = False
    plot.x_axis.font = "modern 16"
    plot.y_axis.font = "modern 16"

    # Add pan and zoom to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    zoom = ZoomTool(plot)
    plot.overlays.append(zoom)

    # Create the colorbar, handing in the appropriate range and colormap
    colorbar = ColorBar(index_mapper=LinearMapper(range=plot.color_mapper.range),
                        color_mapper=plot.color_mapper,
                        orientation='v',
                        resizable='v',
                        width=30,
                        padding=20)
    colorbar.plot = plot
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    # Add pan and zoom tools to the colorbar
    colorbar.tools.append(PanTool(colorbar, constrain_direction="y", constrain=True))
    zoom_overlay = ZoomTool(colorbar, axis="index", tool_mode="range",
                            always_on=True, drag_button="right")
    colorbar.overlays.append(zoom_overlay)

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(plot, colorbar, use_backbuffer=True, bgcolor="lightgray")

    return container