def setUp(self):
        x_shape = (self.batch_size, self.in_size)
        self.x = numpy.random.uniform(-1, 1, x_shape).astype(numpy.float32)
        self.t = numpy.random.randint(len(self.count),
                                      size=self.batch_size).astype(numpy.int32)

        self.link = links.BlackOut(self.in_size, self.count, self.n_samples)
        self.w = numpy.random.uniform(-1, 1, self.link.W.data.shape)
        self.link.W.data[:] = self.w
Example #2
0
 def __init__(self, vocab_size, embed_size, hidden_size, counts, sample_size=200):
     super(Decoder, self).__init__(
         ye=L.EmbedID(vocab_size, embed_size, ignore_label=-1),
         eh=L.Linear(embed_size, 4 * hidden_size),
         hh=L.Linear(hidden_size, 4 * hidden_size),
         wc=L.Linear(hidden_size, hidden_size),
         wh=L.Linear(hidden_size, hidden_size),
         fy=L.BlackOut(hidden_size, counts=counts, sample_size=sample_size),
         test_out=L.Linear(hidden_size, vocab_size),
     )
     self.fy.W.data = self.test_out.W.data
Example #3
0
    def setUp(self):
        self._config_user = chainer.using_config('dtype', self.dtype)
        self._config_user.__enter__()

        x_shape = (self.batch_size, self.in_size)
        self.x = numpy.random.uniform(-1, 1, x_shape).astype(self.dtype)
        self.t = numpy.random.randint(len(self.count),
                                      size=self.batch_size).astype(numpy.int32)

        self.link = links.BlackOut(self.in_size, self.count, self.n_samples)
        self.w = numpy.random.uniform(-1, 1, self.link.W.data.shape)
        self.link.W.data[:] = self.w

        if self.dtype == numpy.float16:
            self.check_forward_options = {'atol': 5e-3}
        else:
            self.check_forward_options = {'atol': 1e-4}