def __init__(self, n_word_types, n_trig_types, n_role_types,
                 n_entity_types, trigger_type2id, entity_type2id, DIM_EMBED,
                 DIM_EVENT, DIM_BILSTM, DIM_TRIG_TYPE, DIM_ROLE_TYPE,
                 DIM_ARG_TYPE, DIM_IO, DROPOUT, REPLACE_TYPE, GENERALISATION,
                 THRESHOLD):
        super(Loader, self).__init__()
        with self.init_scope():
            self.DIM_EMBED = DIM_EMBED
            self.DIM_EVENT = DIM_EVENT
            self.DIM_BILSTM = DIM_BILSTM
            self.DIM_TRIG_TYPE = DIM_TRIG_TYPE
            self.DIM_ROLE_TYPE = DIM_ROLE_TYPE
            self.DIM_ARG_TYPE = DIM_ARG_TYPE
            self.DIM_IO = DIM_IO
            self.DROPOUT = DROPOUT
            self.THRESHOLD = THRESHOLD
            self.GENERALISATION = GENERALISATION
            self.REPLACE_TYPE = REPLACE_TYPE
            self.DROPOUT = DROPOUT

            self.DIM_TREE_LSTM_INPUT = self.DIM_TRIG_TYPE + (
                self.DIM_BILSTM *
                2) + self.DIM_ROLE_TYPE + self.DIM_TRIG_TYPE + (
                    self.DIM_BILSTM * 2) + self.DIM_IO
            self.DIM_ARG = self.DIM_TRIG_TYPE + (self.DIM_BILSTM * 2)

            self.id2triggertype = {v: k for k, v in trigger_type2id.items()}
            self.id2entitytype = {v: k for k, v in entity_type2id.items()}

            self.embed = L.EmbedID(n_word_types,
                                   self.DIM_EMBED,
                                   ignore_label=-1)
            self.bilstm = L.NStepBiLSTM(1, self.DIM_EMBED, self.DIM_BILSTM, 0)
            self.embed_trigtype = L.EmbedID(n_trig_types,
                                            self.DIM_TRIG_TYPE,
                                            ignore_label=-1)
            self.embed_roletype = L.EmbedID(n_role_types,
                                            self.DIM_ROLE_TYPE,
                                            ignore_label=-1)
            self.embed_argtype = L.EmbedID(n_entity_types,
                                           self.DIM_ARG_TYPE,
                                           ignore_label=-1)
            self.embed_io = L.EmbedID(2, self.DIM_IO, ignore_label=-1)

            self.treelstm = L.ChildSumTreeLSTM(self.DIM_TREE_LSTM_INPUT,
                                               self.DIM_EVENT)

            self.l1 = L.Linear(None, self.DIM_EVENT)
            self.y = L.Linear(None, self.DIM_EVENT)
            self.final = L.Linear(None, 1)  # event or non-event
            self.reducedEvent = L.Linear(None, self.DIM_ARG)

            self.len_type_and_arg = self.DIM_TRIG_TYPE + (self.DIM_BILSTM * 2)
            self.len_relation = self.DIM_TRIG_TYPE + (self.DIM_BILSTM * 2) + self.DIM_ROLE_TYPE + self.DIM_ARG_TYPE + \
                               (self.DIM_BILSTM * 2) + self.DIM_IO

            self.trigger_type2id = trigger_type2id
            self.entity_type2id = entity_type2id
Example #2
0
    def setUp(self):
        if self.model_type == 'ChildSumTreeLSTM':
            self.link = links.ChildSumTreeLSTM(self.in_size, self.out_size)
        elif self.model_type == 'NaryTreeLSTM':
            if self.n_ary == 0:
                # n_ary=0 test should be skipped for NaryTreeLSTM
                self.n_ary = 1
            self.link = links.NaryTreeLSTM(self.in_size,
                                           self.out_size,
                                           n_ary=self.n_ary)
        else:
            NotImplementedError()

        for p in self.link.params():
            p.data[:] = numpy.random.uniform(-1, 1, p.shape).astype(self.dtype)

        self.c_prevs = [
            numpy.random.uniform(-1, 1, (5, self.out_size)).astype(self.dtype)
            for _ in range(self.n_ary)
        ]
        self.h_prevs = [
            numpy.random.uniform(-1, 1, (5, self.out_size)).astype(self.dtype)
            for _ in range(self.n_ary)
        ]
        self.x = numpy.random.uniform(-1, 1,
                                      (5, self.in_size)).astype(self.dtype)
        self.inputs = self.c_prevs + self.h_prevs + [self.x]

        self.gc = numpy.random.uniform(-1, 1,
                                       (5, self.out_size)).astype(self.dtype)
        self.gh = numpy.random.uniform(-1, 1,
                                       (5, self.out_size)).astype(self.dtype)

        self.check_forward_options = {}
        self.check_backward_options = {'dtype': numpy.float64}
        if self.dtype == numpy.float16:
            self.check_forward_options = {'atol': 5e-4, 'rtol': 5e-3}
            self.check_backward_options = {
                'dtype': numpy.float64,
                'atol': 5e-4,
                'rtol': 5e-3
            }