Example #1
0
    def forward(self, x):
        if self.h is None:
            batch_size = x.data.shape[0]
            self.h = Variable(np.zeros((batch_size, self.hidden_size)))

        a = self.l1(x) + self.l2(self.h)
        self.h = F.tanh(a)
        return self.h
Example #2
0
 def forward(x):
     x = model.embed(x)
     x = tanh(x)
     x = model.linear(x)
     x = sigmoid(x)
     return x
Example #3
0
 def test_forward(self):
     x = Variable(np.random.rand(1))
     y = F.tanh(x)
     expected = np.tanh(x.data)
     self.assertTrue(np.allclose(y.data, expected))
Example #4
0
def sigmoid(x):
    return 0.5 * (tanh(x) + 1)
Example #5
0
import numpy as np
import heapq
import matplotlib.pyplot as plt
import chainer0
from chainer0 import Function, Variable
import chainer0.functions as F
from chainer0.computational_graph import get_dot_graph

x = Variable(np.array([1.0]), name='x')

#y = F.sin(x)
#y = (y + F.exp(x) - 0.5) * y
#y.backward()
y = F.tanh(x)
y.backward()

for i in range(3):
    gx = x.grad_var
    x.cleargrad()
    gx.backward()

txt = get_dot_graph(gx)
print(txt)
Example #6
0
 def forward(self, x):
     x = F.tanh(self.l1(x))
     x = F.tanh(self.l2(x))
     return self.l3(x)