def __init__(self): print("Model define Start ! ") folder = "models/" nfilters_embeded = int(64) nlayers_embeded = int(4) nfilters_cloud = int(64) nlayers_cloud = int(4) branchweight = float(0.1) lr = numpy.float64(0.001) nepochs = int(80) ent_T = numpy.float64(0.4) name = str("cifar10_64f_4l") input_dims = 3 output_dims = 10 model = Sequential() for i in range(nlayers_embeded): if i == 0: nfilters = input_dims model.add( ConvPoolBNBST(nfilters, nfilters_embeded, 3, 1, 1, 3, 1, 1)) else: nfilters = nfilters_embeded model.add( BinaryConvPoolBNBST(nfilters, nfilters_embeded, 3, 1, 1, 3, 1, 1)) branch = Sequential() branch.add(BinaryLinearBNSoftmax(None, output_dims)) model.add(branch) for i in range(nlayers_cloud): if i == 0: nfilters = nfilters_embeded else: nfilters = nfilters_cloud model.add(Convolution2D(nfilters, nfilters_cloud, 3, 1, 1)) model.add(BatchNormalization(nfilters_cloud)) model.add(Activation('relu')) model.add(max_pooling_2d(3, 1, 1)) model.add(Linear(None, output_dims)) model.build() chain = Chain(branchweight=branchweight, ent_T=ent_T) chain.add_sequence(model) chain.setup_optimizers('adam', lr) print("Model define Over ! ") ##################################Skip the training ################################################## ##################################Load the model after training by other code ######################### print("Loading model Start ! ") #name = self.get_name(**kwargs) #path = '{}/{}'.format(self.folder,name) #epoch = int(kwargs.get("nepochs",2)) #fn = "{}/chain_snapshot_epoch_{:06}".format(path,epoch) #cf = os.path.dirname(os.path.abspath(__file__)) fn = "models/test_cifar10/cifar10_64f_4l/epoch_000080" #ph = cf + fn #print "path %s" % (ph) S.load_npz(fn, chain) self.chain = chain print("Loading model Over ! ")
nfilters_cloud = int(64) nlayers_cloud = int(4) branchweight = float(0.1) lr = numpy.float64(0.001) nepochs = int(80) ent_T = numpy.float64(0.4) name = str("cifar10_64f_4l") input_dims = 3 output_dims = 10 model = Sequential() for i in range(nlayers_embeded): if i == 0: nfilters = input_dims model.add(ConvPoolBNBST(nfilters, nfilters_embeded, 3, 1, 1, 3, 1, 1)) else: nfilters = nfilters_embeded model.add( BinaryConvPoolBNBST(nfilters, nfilters_embeded, 3, 1, 1, 3, 1, 1)) branch = Sequential() branch.add(BinaryLinearBNSoftmax(None, output_dims)) model.add(branch) for i in range(nlayers_cloud): if i == 0: nfilters = nfilters_embeded else: nfilters = nfilters_cloud model.add(Convolution2D(nfilters, nfilters_cloud, 3, 1, 1))