Example #1
0
def main():
    config, args = parse_args()
    model = get_model(config["model"])
    if args.gpu != -1:
        model.to_gpu(args.gpu)

    dataset = VOCBboxDataset(
        data_dir="../dataset/VOC_test/VOC2007_test",
        year='2007', split='test', use_difficult=True, return_difficult=True)
    iterator = iterators.SerialIterator(
        dataset, args.batchsize, repeat=False, shuffle=False)

    imgs, pred_values, gt_values = apply_prediction_to_iterator(
        model.predict, iterator, hook=ProgressHook(len(dataset)))
    # delete unused iterator explicitly
    del imgs

    pred_bboxes, pred_labels, pred_scores = pred_values
    gt_bboxes, gt_labels, gt_difficults = gt_values

    result = eval_detection_voc(
        pred_bboxes, pred_labels, pred_scores,
        gt_bboxes, gt_labels, gt_difficults,
        use_07_metric=True)

    print()
    print('mAP: {:f}'.format(result['map']))
    for l, name in enumerate(voc_bbox_label_names):
        if result['ap'][l]:
            print('{:s}: {:f}'.format(name, result['ap'][l]))
        else:
            print('{:s}: -'.format(name))
Example #2
0
def setup(dataset, model, pretrained_model, batchsize):
    dataset_name = dataset
    if dataset_name == 'voc':
        dataset = VOCBboxDataset(year='2007',
                                 split='test',
                                 use_difficult=True,
                                 return_difficult=True)
        label_names = voc_bbox_label_names

        def eval_(out_values, rest_values):
            pred_bboxes, pred_labels, pred_scores = out_values
            gt_bboxes, gt_labels, gt_difficults = rest_values

            result = eval_detection_voc(pred_bboxes,
                                        pred_labels,
                                        pred_scores,
                                        gt_bboxes,
                                        gt_labels,
                                        gt_difficults,
                                        use_07_metric=True)

            print()
            print('mAP: {:f}'.format(result['map']))
            for l, name in enumerate(voc_bbox_label_names):
                if result['ap'][l]:
                    print('{:s}: {:f}'.format(name, result['ap'][l]))
                else:
                    print('{:s}: -'.format(name))

    elif dataset_name == 'coco':
        dataset = COCOBboxDataset(year='2017',
                                  split='val',
                                  use_crowded=True,
                                  return_area=True,
                                  return_crowded=True)
        label_names = coco_bbox_label_names

        def eval_(out_values, rest_values):
            pred_bboxes, pred_labels, pred_scores = out_values
            gt_bboxes, gt_labels, gt_area, gt_crowded = rest_values

            result = eval_detection_coco(pred_bboxes, pred_labels, pred_scores,
                                         gt_bboxes, gt_labels, gt_area,
                                         gt_crowded)

            print()
            for area in ('all', 'large', 'medium', 'small'):
                print(
                    'mmAP ({}):'.format(area), result[
                        'map/iou=0.50:0.95/area={}/max_dets=100'.format(area)])

    cls, pretrained_models, default_batchsize = models[model]
    if pretrained_model is None:
        pretrained_model = pretrained_models.get(dataset_name, dataset_name)
    model = cls(n_fg_class=len(label_names), pretrained_model=pretrained_model)

    if batchsize is None:
        batchsize = default_batchsize

    return dataset, eval_, model, batchsize
Example #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('data_dir',
                        type=str,
                        help='Path to the dirctory of COCO dataset.')
    parser.add_argument('dataset_type', type=str, choices=['COCO', 'VOC'])
    parser.add_argument('--split',
                        type=str,
                        default='val',
                        choices=['train', 'val'])
    args = parser.parse_args()

    if args.dataset_type == 'COCO':
        dataset = COCOBboxDataset(args.data_dir, args.split)
    elif args.dataset_type == 'VOC':
        dataset = VOCBboxDataset(args.data_dir, split=args.split)
    else:
        raise ValueError()
    visualizer = Visualizer(args.dataset_type)

    for img, bbox, label in dataset:
        result = visualizer.visualize(img, ([bbox], [label]))

        cv2.imshow('output', result)
        key = cv2.waitKey(0) & 0xff
        if key == ord('q'):
            break
    cv2.destroyAllWindows()
Example #4
0
def main():
    dataset = VOCBboxDataset(year='2007', split='test')
    models = [
        ('Faster R-CNN', FasterRCNNVGG16(pretrained_model='voc07')),
        ('SSD300', SSD300(pretrained_model='voc0712')),
        ('SSD512', SSD512(pretrained_model='voc0712')),
    ]
    indices = [29, 301, 189, 229]

    fig = plt.figure(figsize=(30, 30))
    for i, idx in enumerate(indices):
        for j, (name, model) in enumerate(models):
            img, _, _ = dataset[idx]
            bboxes, labels, scores = model.predict([img])
            bbox, label, score = bboxes[0], labels[0], scores[0]

            ax = fig.add_subplot(
                len(indices), len(models), i * len(models) + j + 1)
            vis_bbox(
                img, bbox, label, score,
                label_names=voc_bbox_label_names, ax=ax
            )

            # Set MatplotLib parameters
            ax.set_aspect('equal')
            if i == 0:
                font = FontProperties()
                font.set_family('serif')
                ax.set_title(name, fontsize=35, y=1.03, fontproperties=font)
            plt.axis('off')
            plt.tight_layout()

    plt.show()
Example #5
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model')
    args = parser.parse_args()

    model = ResNet50(pretrained_model=args.pretrained_model,
                     n_class=len(voc_bbox_label_names),
                     arch='he')
    model.pick = 'fc6'
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    dataset = VOCBboxDataset(split='test', year='2007', use_difficult=False)
    dataset = TransformDataset(dataset, ('img', 'bbox'), bbox_to_multi_label)
    iterator = iterators.SerialIterator(dataset,
                                        8,
                                        repeat=False,
                                        shuffle=False)

    in_values, out_values, rest_values = apply_to_iterator(
        PredictFunc(model, thresh=0),
        iterator,
        hook=ProgressHook(len(dataset)))
    # delete unused iterators explicitly
    del in_values
    pred_labels, pred_scores = out_values
    gt_labels, = rest_values

    result = eval_multi_label_classification(pred_labels, pred_scores,
                                             gt_labels)
    print()
    print('mAP: {:f}'.format(result['map']))
    for l, name in enumerate(voc_bbox_label_names):
        if result['ap'][l]:
            print('{:s}: {:f}'.format(name, result['ap'][l]))
        else:
            print('{:s}: -'.format(name))
    if len(argv) > 2:
        continuous = bool(argv[2])
else:
    gpu_id = 0
print('gpu_id is {}'.format(gpu_id))
SAVE_PATH = 'ssd300_model_vocall_trval_lrdrop_shadow.npz'
print('save path is {}'.format(SAVE_PATH))
iters = 800000 + 1
batch_size = 8

model = SSD300(n_fg_class=21, pretrained_model='imagenet')
model.to_gpu(gpu_id)

train07 = VOCBboxDataset(data_dir='auto',
                         year='2007',
                         split='trainval',
                         use_difficult=True,
                         return_difficult=False)
train12 = VOCBboxDataset(data_dir='auto',
                         year='2012',
                         split='trainval',
                         use_difficult=True,
                         return_difficult=False)

train07_right = train07[len(train07) // 2:]
train12_right = train12[len(train12) // 2:]

train_right = ConcatenatedDataset(train07_right, train12_right)
train = TransformDataset(train_right,
                         _Transform(model.coder, model.insize, model.mean))
train_iter = chainer.iterators.SerialIterator(train,
Example #7
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('multi_task_300', 'multi_task_512'),
                        default='multi_task_300')
    parser.add_argument('--batchsize', type=int, default=32)
    parser.add_argument('--iteration', type=int, default=120000)
    parser.add_argument('--eval_step',
                        type=int,
                        nargs='*',
                        default=[80000, 100000, 120000])
    parser.add_argument('--lr_step',
                        type=int,
                        nargs='*',
                        default=[80000, 100000])
    parser.add_argument('--lr', type=float, default=0.001)
    parser.add_argument('--snap_step', type=int, default=10000)
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--out',
                        default='result')  # in experiments for real experiment
    parser.add_argument('--resume', type=str)
    parser.add_argument('--detection', action='store_true', default=False)
    parser.add_argument('--segmentation', action='store_true', default=False)
    parser.add_argument('--attention', action='store_true', default=False)
    parser.add_argument('--dataset', default='voc', type=str)
    parser.add_argument('--experiment', type=str, default='final_voc')
    parser.add_argument('--multitask_loss', action='store_true', default=False)
    parser.add_argument('--dynamic_loss', action='store_true', default=False)
    parser.add_argument('--log_interval', type=int, default=10)
    parser.add_argument('--debug', action='store_true', default=False)
    parser.add_argument('--update_split_interval', type=int, default=100)
    parser.add_argument(
        '--loss_split', type=float, default=0.5
    )  # in fact for detection, other task(segmentation) is 1-loss_split
    args = parser.parse_args()
    snap_step = args.snap_step
    args.snap_step = []
    for step in range(snap_step, args.iteration + 1, snap_step):
        args.snap_step.append(step)

    # redefine the output path
    import os
    import time
    args.out = os.path.join(args.out, args.experiment,
                            time.strftime("%Y%m%d_%H%M%S", time.localtime()))

    if args.model == 'multi_task_300':
        model = Multi_task_300(n_fg_class=len(voc_bbox_label_names),
                               pretrained_model='imagenet',
                               detection=args.detection,
                               segmentation=args.segmentation,
                               attention=args.attention)
    elif args.model == 'multi_task_512':
        model = Multi_task_512(n_fg_class=len(voc_bbox_label_names),
                               pretrained_model='imagenet',
                               detection=args.detection,
                               segmentation=args.segmentation,
                               attention=args.attention)

    model.use_preset('evaluate')
    if not (args.segmentation or args.detection):
        raise RuntimeError

    train_chain = MultiboxTrainChain(model,
                                     gpu=args.gpu >= 0,
                                     use_multi_task_loss=args.multitask_loss,
                                     loss_split=args.loss_split)
    train_chain.cleargrads()

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    train = TransformDataset(
        Multi_task_VOC(voc_experiments[args.experiment][args.experiment +
                                                        '_train']),
        Transform(model.coder, model.insize, model.mean))
    train_iter = chainer.iterators.MultiprocessIterator(
        train, batch_size=args.batchsize)

    test = VOCBboxDataset(year='2007',
                          split='test',
                          use_difficult=True,
                          return_difficult=True)

    test_iter = chainer.iterators.SerialIterator(test,
                                                 args.batchsize,
                                                 repeat=False,
                                                 shuffle=False)

    test_mask = VOCSemanticSegmentationDataset(split='val')
    test_mask_iter = chainer.iterators.SerialIterator(test_mask,
                                                      args.batchsize,
                                                      repeat=False,
                                                      shuffle=False)

    optimizer = chainer.optimizers.MomentumSGD()
    optimizer.setup(train_chain)
    # optimizer.add_hook(GradientClipping(0.1))
    for param in train_chain.params():
        if param.name == 'b':
            param.update_rule.add_hook(GradientScaling(2))
        else:
            param.update_rule.add_hook(WeightDecay(0.0005))

    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                device=args.gpu)
    trainer = training.Trainer(updater, (args.iteration, 'iteration'),
                               args.out)
    '''if args.resume:
        serializers.load_npz(args.resume, trainer)'''
    trainer.extend(extensions.ExponentialShift('lr', 0.1, init=args.lr),
                   trigger=triggers.ManualScheduleTrigger(
                       args.lr_step, 'iteration'))

    if args.dataset == 'voc':
        use_07 = True
        label_names = voc_bbox_label_names
    elif args.dataset == 'coco':
        label_names = coco_bbox_label_names
    if args.detection and not args.debug:
        trainer.extend(MultitaskEvaluator(test_iter,
                                          model,
                                          args.dataset,
                                          use_07,
                                          label_names=label_names),
                       trigger=triggers.ManualScheduleTrigger(
                           args.eval_step + [args.iteration], 'iteration'))

    if args.segmentation and not args.debug:
        trainer.extend(MultitaskEvaluator(test_mask_iter,
                                          model,
                                          dataset=args.dataset,
                                          label_names=label_names,
                                          detection=False),
                       trigger=triggers.ManualScheduleTrigger(
                           args.eval_step + [args.iteration], 'iteration'))

    log_interval = args.log_interval, 'iteration'
    trainer.extend(extensions.LogReport(trigger=log_interval))
    if args.segmentation and args.detection and args.dynamic_loss:
        trainer.extend(
            loss_split.LossSplit(trigger=(args.update_split_interval,
                                          'iteration')))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'lr', 'main/loss', 'main/loss/mask',
        'main/loss/loc', 'main/loss/conf', 'main/loss/split'
    ]),
                   trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.extend(extensions.snapshot(),
                   trigger=triggers.ManualScheduleTrigger(
                       args.snap_step + [args.iteration], 'iteration'))
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'),
                   trigger=triggers.ManualScheduleTrigger(
                       args.snap_step + [args.iteration], 'iteration'))
    if args.resume:
        if 'model' in args.resume:
            serializers.load_npz(args.resume, model)
        else:
            serializers.load_npz(args.resume, trainer)

    print(args)

    trainer.run()
def main():
    parser = argparse.ArgumentParser(description='Chainer YOLOv3 VOC Train')
    parser.add_argument('--batchsize', '-b', type=int, default=8)
    parser.add_argument('--iteration', '-i', type=int, default=50200)
    parser.add_argument('--gpus', '-g', type=int, nargs='*', default=[])
    parser.add_argument('--out', '-o', default='yolov3-voc-result')
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--display_interval', type=int, default=100)
    parser.add_argument('--snapshot_interval', type=int, default=100)
    parser.add_argument('--ignore_thresh', type=float, default=0.5)
    parser.add_argument('--thresh', type=float, default=0.4)
    parser.add_argument('--darknet', default='')
    parser.add_argument('--validation_size', type=int, default=32)
    args = parser.parse_args()

    print('GPUs: {}'.format(args.gpus))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# iteration: {}'.format(args.iteration))
    print('')
    
    random.seed(args.seed)
    np.random.seed(args.seed)
    
    base = None
    if len(args.darknet) > 0:
        darknet53 = Darknet53(20)
        serializers.load_npz(args.darknet, darknet53)
        base = darknet53.base
    yolov3 = YOLOv3(20, base, ignore_thresh=args.ignore_thresh)
    model = YOLOv3Loss(yolov3)
    device = -1
    if len(args.gpus) > 0:
        device = args.gpus[0]
        cuda.cupy.random.seed(args.seed)
        cuda.get_device_from_id(args.gpus[0]).use()
    if len(args.gpus) == 1:
        model.to_gpu()
    
    optimizer = chainer.optimizers.MomentumSGD(lr=0.001)
    optimizer.setup(model)
    optimizer.add_hook(optimizer_hooks.WeightDecay(0.0005), 'hook_decay')
    optimizer.add_hook(optimizer_hooks.GradientClipping(10.0), 'hook_grad_clip')
    
    
    train = VOCBboxDataset(split='train')
    test = VOCBboxDataset(split='val')
    train = YOLOVOCDataset(train, classifier=False, jitter=0.3,
                        hue=0.1, sat=1.5, val=1.5)
    #train = train[np.arange(args.batchsize)]
    test = YOLOVOCDataset(test, classifier=False)
    test = test[np.random.permutation(np.arange(len(test)))[:min(args.validation_size, len(test))]]
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    test_iter = chainer.iterators.SerialIterator(test, args.batchsize,
                                                 repeat=False, shuffle=False)

    if len(args.gpus) <= 1:
        updater = training.StandardUpdater(
            train_iter, optimizer, converter=concat_yolo, device=device)
    else:
        devices = {'main': args.gpus[0]}
        for gpu in args.gpus[1:]:
            devices['gpu{}'.format(gpu)] = gpu
        updater = training.ParallelUpdater(
            train_iter, optimizer, converter=concat_yolo, devices=devices)
    trainer = training.Trainer(
        updater, (args.iteration, 'iteration'), out=args.out)
    
    display_interval = (args.display_interval, 'iteration')
    snapshot_interval = (args.snapshot_interval, 'iteration')
    
    trainer.extend(extensions.Evaluator(
        test_iter, model, converter=concat_yolo, 
        device=device), trigger=display_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.LogReport(trigger=display_interval))
    if extensions.PlotReport.available():
        trainer.extend(
            extensions.PlotReport(
                ['main/loss', 'validation/main/loss'], 'iteration',
                display_interval, file_name='loss.png'))
    
    trainer.extend(extensions.PrintReport(
        ['epoch', 'iteration', 
         'main/loss', 'validation/main/loss', 'elapsed_time']),
                  trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=1))
    
    trainer.extend(extensions.snapshot_object(
        yolov3, 'yolov3_snapshot.npz'), 
        trigger=training.triggers.MinValueTrigger(
            'validation/main/loss', snapshot_interval))
    trainer.extend(extensions.snapshot_object(
        yolov3, 'yolov3_final.npz'), 
        trigger=snapshot_interval)
    
    trainer.extend(DarknetShift(
        optimizer, 'steps', args.iteration, burn_in=1000,
        steps=[args.iteration-10200,args.iteration-5200], scales=[0.1,0.1]
    ))
    trainer.extend(CropSizeUpdater(train, 
                                   [(10+i)*32 for i in range(0,5)],
                                   args.iteration - 200))
    
    detector = YOLOv3Predictor(yolov3, thresh=args.thresh)
    class_names = load_list('./data/voc.names')
    trainer.extend(YOLODetection(
        detector, 
        ['./data/image/dog.jpg'],
        class_names, size=(416, 416) ,thresh=args.thresh,
        trigger=display_interval, device=device
    ))
    
    trainer.run()
        hm_mae = F.mean_absolute_error(hm, indata["hm"])
        reporter.report(
            {
                'loss': loss,
                'hm_loss': hm_loss,
                'hm_pos_loss': detail_losses['hm_pos_loss'],
                'hm_neg_loss': detail_losses['hm_neg_loss'],
                'hm_mae': hm_mae,
                'wh_loss': wh_loss,
                'offset_loss': offset_loss
            }, self)
        return loss


if __name__ == '__main__':
    from centernet.datasets.transforms import CenterDetectionTransform
    from chainercv.datasets import VOCBboxDataset
    from chainer.datasets import TransformDataset
    from chainer.dataset import concat_examples
    from centernet.models.networks.hourglass import HourglassNet

    center_detection_transform = CenterDetectionTransform(512, 5, 4)

    train = VOCBboxDataset(year='2012', split='trainval')

    x = concat_examples([train[0]])

    print(x[0].shape)
    detector = CenterDetector(HourglassNet, 512, 5)
    print(detector.predict(x[0]))
Example #10
0
def main():
    parser = argparse.ArgumentParser(
        description='ChainerCV training example: Faster R-CNN')
    parser.add_argument('--dataset',
                        choices=('voc07', 'voc0712'),
                        help='The dataset to use: VOC07, VOC07+12',
                        default='voc07')
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--lr', '-l', type=float, default=1e-3)
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Output directory')
    parser.add_argument('--seed', '-s', type=int, default=0)
    parser.add_argument('--step_size', '-ss', type=int, default=50000)
    parser.add_argument('--iteration', '-i', type=int, default=70000)
    args = parser.parse_args()

    np.random.seed(args.seed)

    if args.dataset == 'voc07':
        train_data = VOCBboxDataset(split='trainval', year='2007')
    elif args.dataset == 'voc0712':
        train_data = ConcatenatedDataset(
            VOCBboxDataset(year='2007', split='trainval'),
            VOCBboxDataset(year='2012', split='trainval'))
    test_data = VOCBboxDataset(split='test',
                               year='2007',
                               use_difficult=True,
                               return_difficult=True)
    faster_rcnn = FasterRCNNVGG16(n_fg_class=len(voc_bbox_label_names),
                                  pretrained_model='imagenet')
    faster_rcnn.use_preset('evaluate')
    model = FasterRCNNTrainChain(faster_rcnn)
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()
    optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0005))

    train_data = TransformDataset(train_data, Transform(faster_rcnn))

    train_iter = chainer.iterators.MultiprocessIterator(train_data,
                                                        batch_size=1,
                                                        n_processes=None,
                                                        shared_mem=100000000)
    test_iter = chainer.iterators.SerialIterator(test_data,
                                                 batch_size=1,
                                                 repeat=False,
                                                 shuffle=False)
    updater = chainer.training.updaters.StandardUpdater(train_iter,
                                                        optimizer,
                                                        device=args.gpu)

    trainer = training.Trainer(updater, (args.iteration, 'iteration'),
                               out=args.out)

    trainer.extend(extensions.snapshot_object(model.faster_rcnn,
                                              'snapshot_model.npz'),
                   trigger=(args.iteration, 'iteration'))
    trainer.extend(extensions.ExponentialShift('lr', 0.1),
                   trigger=(args.step_size, 'iteration'))

    log_interval = 20, 'iteration'
    plot_interval = 3000, 'iteration'
    print_interval = 20, 'iteration'

    trainer.extend(chainer.training.extensions.observe_lr(),
                   trigger=log_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'iteration',
        'epoch',
        'elapsed_time',
        'lr',
        'main/loss',
        'main/roi_loc_loss',
        'main/roi_cls_loss',
        'main/rpn_loc_loss',
        'main/rpn_cls_loss',
        'validation/main/map',
    ]),
                   trigger=print_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    if extensions.PlotReport.available():
        trainer.extend(extensions.PlotReport(['main/loss'],
                                             file_name='loss.png',
                                             trigger=plot_interval),
                       trigger=plot_interval)

    trainer.extend(DetectionVOCEvaluator(test_iter,
                                         model.faster_rcnn,
                                         use_07_metric=True,
                                         label_names=voc_bbox_label_names),
                   trigger=ManualScheduleTrigger(
                       [args.step_size, args.iteration], 'iteration'))

    trainer.extend(extensions.dump_graph('main/loss'))

    trainer.run()
Example #11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('faster_rcnn', 'ssd300', 'ssd512', 'yolo_v3'),
                        default='ssd300')
    parser.add_argument('--pretrained_model')
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--batchsize', type=int, default=32)
    args = parser.parse_args()

    if args.model == 'faster_rcnn':
        if args.pretrained_model:
            model = FasterRCNNVGG16(n_fg_class=len(voc_bbox_label_names),
                                    pretrained_model=args.pretrained_model)
        else:
            model = FasterRCNNVGG16(pretrained_model='voc07')
    elif args.model == 'ssd300':
        if args.pretrained_model:
            model = SSD300(n_fg_class=len(voc_bbox_label_names),
                           pretrained_model=args.pretrained_model)
        else:
            model = SSD300(pretrained_model='voc0712')
    elif args.model == 'ssd512':
        if args.pretrained_model:
            model = SSD512(n_fg_class=len(voc_bbox_label_names),
                           pretrained_model=args.pretrained_model)
        else:
            model = SSD512(pretrained_model='voc0712')
    elif args.model == 'yolo_v3':
        if args.pretrained_model:
            model = YOLOv3(n_fg_class=len(voc_bbox_label_names),
                           pretrained_model=args.pretrained_model)
        else:
            model = YOLOv3(pretrained_model='voc0712')

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    model.use_preset('evaluate')

    dataset = VOCBboxDataset(year='2007',
                             split='test',
                             use_difficult=True,
                             return_difficult=True)
    iterator = iterators.SerialIterator(dataset,
                                        args.batchsize,
                                        repeat=False,
                                        shuffle=False)

    in_values, out_values, rest_values = apply_to_iterator(model.predict,
                                                           iterator,
                                                           hook=ProgressHook(
                                                               len(dataset)))
    # delete unused iterators explicitly
    del in_values

    pred_bboxes, pred_labels, pred_scores = out_values
    gt_bboxes, gt_labels, gt_difficults = rest_values

    result = eval_detection_voc(pred_bboxes,
                                pred_labels,
                                pred_scores,
                                gt_bboxes,
                                gt_labels,
                                gt_difficults,
                                use_07_metric=True)

    print()
    print('mAP: {:f}'.format(result['map']))
    for l, name in enumerate(voc_bbox_label_names):
        if result['ap'][l]:
            print('{:s}: {:f}'.format(name, result['ap'][l]))
        else:
            print('{:s}: -'.format(name))
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

from chainercv.datasets import VOCBboxDataset
from chainercv.datasets import voc_bbox_label_names
from chainercv.visualizations import vis_bbox
import torch
from torchnet.meter import AverageValueMeter, MovingAverageValueMeter

from model.faster_rcnn import faster_rcnn
from model.utils.transform_tools import image_normalize

train_dataset = VOCBboxDataset(year='2007', split='train')
val_dataset = VOCBboxDataset(year='2007', split='val')
trainval_dataset = VOCBboxDataset(year='2007', split='trainval')
test_dataset = VOCBboxDataset(year='2007', split='test')


def adjust_learning_rate(optimizer,
                         epoch,
                         init_lr,
                         lr_decay_factor=0.1,
                         lr_decay_epoch=10):
    """Sets the learning rate to the initial LR decayed by lr_decay_factor every lr_decay_epoch epochs"""
    if epoch % lr_decay_epoch == 0:
        lr = init_lr * (lr_decay_factor**(epoch // lr_decay_epoch))
        print('LR is set to {}'.format(lr))
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--batchsize', type=int, default=2)
    parser.add_argument('--epoch', type=int, default=10)
    parser.add_argument('--mini', action="store_true")
    parser.add_argument('--input_size', type=int, default=512)
    args = parser.parse_args()

    dtype = np.float32

    num_class = len(voc_bbox_label_names)

    data_augmentation_transform = DataAugmentationTransform(args.input_size)
    center_detection_transform = CenterDetectionTransform(args.input_size,
                                                          num_class,
                                                          4,
                                                          dtype=dtype)

    train = TransformDataset(
        ConcatenatedDataset(VOCBboxDataset(year='2007', split='trainval'),
                            VOCBboxDataset(year='2012', split='trainval')),
        data_augmentation_transform)
    train = TransformDataset(train, center_detection_transform)
    if args.mini:
        train = datasets.SubDataset(train, 0, 100)
    train_iter = chainer.iterators.MultiprocessIterator(train, args.batchsize)

    test = VOCBboxDataset(year='2007',
                          split='test',
                          use_difficult=True,
                          return_difficult=True)
    if args.mini:
        test = datasets.SubDataset(test, 0, 20)
    test_iter = chainer.iterators.SerialIterator(test,
                                                 args.batchsize,
                                                 repeat=False,
                                                 shuffle=False)

    detector = CenterDetector(HourglassNet,
                              args.input_size,
                              num_class,
                              dtype=dtype)
    #detector = CenterDetector(SimpleCNN, args.input_size, num_class)
    train_chain = CenterDetectorTrain(detector, 1, 0.1, 1)
    #train_chain = CenterDetectorTrain(detector, 1, 0, 0)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        train_chain.to_gpu(args.gpu)

    optimizer = Adam(alpha=1.25e-4)
    #optimizer = SGD()
    optimizer.setup(train_chain)

    updater = StandardUpdater(train_iter, optimizer, device=args.gpu)

    log_interval = 1, 'epoch'
    log_interval_mini = 500, 'iteration'
    trainer = Trainer(updater, (args.epoch, 'epoch'), out=f"result{args.gpu}")
    trainer.extend(extensions.LogReport(trigger=log_interval_mini))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'lr',
        'main/loss',
        'main/hm_loss',
        'main/wh_loss',
        'main/offset_loss',
        'main/hm_mae',
        'main/hm_pos_loss',
        'main/hm_neg_loss',
        'validation/main/map',
    ]),
                   trigger=log_interval_mini)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(DetectionVOCEvaluator(test_iter,
                                         detector,
                                         use_07_metric=True,
                                         label_names=voc_bbox_label_names),
                   trigger=(1, 'epoch'))
    trainer.extend(extensions.snapshot_object(
        detector, 'detector{.updater.epoch:03}.npz'),
                   trigger=(1, 'epoch'))

    trainer.run()
Example #14
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('multi_task_300', 'multi_task_512'),
                        default='multi_task_300')
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--model_path', type=str)
    parser.add_argument('--detection', action='store_true', default=False)
    parser.add_argument('--segmentation', action='store_true', default=False)
    parser.add_argument('--attention', action='store_true', default=False)
    parser.add_argument('--dataset', default='voc', type=str)
    parser.add_argument('--eval_seg', default=False, action='store_true')
    parser.add_argument('--eval_det', default=False, action='store_true')
    parser.add_argument('--batchsize', type=int, default=32)

    args = parser.parse_args()
    print(args)
    if not (args.segmentation or args.detection):
        raise RuntimeError

    if not args.model_path:
        raise RuntimeError

    if args.model == 'multi_task_300':
        model = Multi_task_300(n_fg_class=len(voc_bbox_label_names),
                               pretrained_model='imagenet',
                               detection=args.detection,
                               segmentation=args.segmentation,
                               attention=args.attention)
    elif args.model == 'multi_task_512':
        model = Multi_task_512(n_fg_class=len(voc_bbox_label_names),
                               pretrained_model='imagenet',
                               detection=args.detection,
                               segmentation=args.segmentation,
                               attention=args.attention)

    model.use_preset('evaluate')

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    if args.dataset == 'voc':
        use_07 = True
        label_names = voc_bbox_label_names
    elif args.dataset == 'coco':
        label_names = coco_bbox_label_names

    if args.model_path:
        serializers.load_npz(args.model_path, model)

    if args.detection and args.eval_det:
        test = VOCBboxDataset(year='2007',
                              split='test',
                              use_difficult=True,
                              return_difficult=True)

        test_iter = chainer.iterators.SerialIterator(test,
                                                     args.batchsize,
                                                     repeat=False,
                                                     shuffle=False)
        det_evaluator = MultitaskEvaluator(test_iter,
                                           model,
                                           use_07_metric=use_07,
                                           label_names=label_names,
                                           detection=True)
        result = det_evaluator()
        print('detection result')
        print(result)

    if args.segmentation and args.eval_seg:
        test_mask = VOCSemanticSegmentationDataset(split='val')
        test_mask_iter = chainer.iterators.SerialIterator(test_mask,
                                                          args.batchsize,
                                                          repeat=False,
                                                          shuffle=False)
        seg_evaluator = MultitaskEvaluator(test_mask_iter,
                                           model,
                                           use_07_metric=use_07,
                                           label_names=label_names,
                                           detection=False)
        result_mask = seg_evaluator()
        print('segmentation result')
        print(result_mask)
Example #15
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('ssd300', 'ssd512'),
                        default='ssd300')
    parser.add_argument('--batchsize', type=int, default=32)
    parser.add_argument('--np', type=int, default=8)
    parser.add_argument('--test-batchsize', type=int, default=16)
    parser.add_argument('--iteration', type=int, default=120000)
    parser.add_argument('--step', type=int, nargs='*', default=[80000, 100000])
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--out', default='result')
    parser.add_argument('--resume')
    parser.add_argument('--dtype',
                        type=str,
                        choices=dtypes.keys(),
                        default='float32',
                        help='Select the data type of the model')
    parser.add_argument('--model-dir',
                        default=None,
                        type=str,
                        help='Where to store models')
    parser.add_argument('--dataset-dir',
                        default=None,
                        type=str,
                        help='Where to store datasets')
    parser.add_argument('--dynamic-interval',
                        default=None,
                        type=int,
                        help='Interval for dynamic loss scaling')
    parser.add_argument('--init-scale',
                        default=1,
                        type=float,
                        help='Initial scale for ada loss')
    parser.add_argument('--loss-scale-method',
                        default='approx_range',
                        type=str,
                        help='Method for adaptive loss scaling')
    parser.add_argument('--scale-upper-bound',
                        default=16,
                        type=float,
                        help='Hard upper bound for each scale factor')
    parser.add_argument('--accum-upper-bound',
                        default=1024,
                        type=float,
                        help='Accumulated upper bound for all scale factors')
    parser.add_argument('--update-per-n-iteration',
                        default=1,
                        type=int,
                        help='Update the loss scale value per n iteration')
    parser.add_argument('--snapshot-per-n-iteration',
                        default=10000,
                        type=int,
                        help='The frequency of taking snapshots')
    parser.add_argument('--n-uf', default=1e-3, type=float)
    parser.add_argument('--nosanity-check', default=False, action='store_true')
    parser.add_argument('--nouse-fp32-update',
                        default=False,
                        action='store_true')
    parser.add_argument('--profiling', default=False, action='store_true')
    parser.add_argument('--verbose',
                        action='store_true',
                        default=False,
                        help='Verbose output')
    args = parser.parse_args()

    # https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator
    if hasattr(multiprocessing, 'set_start_method'):
        multiprocessing.set_start_method('forkserver')
        p = multiprocessing.Process()
        p.start()
        p.join()

    comm = chainermn.create_communicator('pure_nccl')
    device = comm.intra_rank

    # Set up workspace
    # 12 GB GPU RAM for workspace
    chainer.cuda.set_max_workspace_size(16 * 1024 * 1024 * 1024)
    chainer.global_config.cv_resize_backend = 'cv2'

    # Setup the data type
    # when initializing models as follows, their data types will be casted.
    # Weethave to forbid the usage of cudnn
    if args.dtype != 'float32':
        chainer.global_config.use_cudnn = 'never'
    chainer.global_config.dtype = dtypes[args.dtype]
    print('==> Setting the data type to {}'.format(args.dtype))

    if args.model_dir is not None:
        chainer.dataset.set_dataset_root(args.model_dir)
    if args.model == 'ssd300':
        model = SSD300(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model='imagenet')
    elif args.model == 'ssd512':
        model = SSD512(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model='imagenet')

    model.use_preset('evaluate')

    ######################################
    # Setup model
    #######################################
    # Apply ada loss transform
    recorder = AdaLossRecorder(sample_per_n_iter=100)
    profiler = Profiler()
    sanity_checker = SanityChecker(
        check_per_n_iter=100) if not args.nosanity_check else None
    # Update the model to support AdaLoss
    # TODO: refactorize
    model_ = AdaLossScaled(
        model,
        init_scale=args.init_scale,
        cfg={
            'loss_scale_method': args.loss_scale_method,
            'scale_upper_bound': args.scale_upper_bound,
            'accum_upper_bound': args.accum_upper_bound,
            'update_per_n_iteration': args.update_per_n_iteration,
            'recorder': recorder,
            'profiler': profiler,
            'sanity_checker': sanity_checker,
            'n_uf_threshold': args.n_uf,
            # 'power_of_two': False,
        },
        transforms=[
            AdaLossTransformLinear(),
            AdaLossTransformConvolution2D(),
        ],
        verbose=args.verbose)

    if comm.rank == 0:
        print(model)

    train_chain = MultiboxTrainChain(model_, comm=comm)
    chainer.cuda.get_device_from_id(device).use()

    # to GPU
    model.coder.to_gpu()
    model.extractor.to_gpu()
    model.multibox.to_gpu()

    shared_mem = 100 * 1000 * 1000 * 4

    if args.dataset_dir is not None:
        chainer.dataset.set_dataset_root(args.dataset_dir)
    train = TransformDataset(
        ConcatenatedDataset(VOCBboxDataset(year='2007', split='trainval'),
                            VOCBboxDataset(year='2012', split='trainval')),
        ('img', 'mb_loc', 'mb_label'),
        Transform(model.coder,
                  model.insize,
                  model.mean,
                  dtype=dtypes[args.dtype]))

    if comm.rank == 0:
        indices = np.arange(len(train))
    else:
        indices = None
    indices = chainermn.scatter_dataset(indices, comm, shuffle=True)
    train = train.slice[indices]

    train_iter = chainer.iterators.MultiprocessIterator(train,
                                                        args.batchsize //
                                                        comm.size,
                                                        n_processes=8,
                                                        n_prefetch=2,
                                                        shared_mem=shared_mem)

    if comm.rank == 0:  # NOTE: only performed on the first device
        test = VOCBboxDataset(year='2007',
                              split='test',
                              use_difficult=True,
                              return_difficult=True)
        test_iter = chainer.iterators.SerialIterator(test,
                                                     args.test_batchsize,
                                                     repeat=False,
                                                     shuffle=False)

    # initial lr is set to 1e-3 by ExponentialShift
    optimizer = chainermn.create_multi_node_optimizer(
        chainer.optimizers.MomentumSGD(), comm)
    if args.dtype == 'mixed16':
        if not args.nouse_fp32_update:
            print('==> Using FP32 update for dtype=mixed16')
            optimizer.use_fp32_update()  # by default use fp32 update

        # HACK: support skipping update by existing loss scaling functionality
        if args.dynamic_interval is not None:
            optimizer.loss_scaling(interval=args.dynamic_interval, scale=None)
        else:
            optimizer.loss_scaling(interval=float('inf'), scale=None)
            optimizer._loss_scale_max = 1.0  # to prevent actual loss scaling

    optimizer.setup(train_chain)
    for param in train_chain.params():
        if param.name == 'b':
            param.update_rule.add_hook(GradientScaling(2))
        else:
            param.update_rule.add_hook(WeightDecay(0.0005))

    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                device=device)
    # if args.dtype == 'mixed16':
    #     updater.loss_scale = 8
    iteration_interval = (args.iteration, 'iteration')

    trainer = training.Trainer(updater, iteration_interval, args.out)
    # trainer.extend(extensions.ExponentialShift('lr', 0.1, init=args.lr),
    #                trigger=triggers.ManualScheduleTrigger(
    #                    args.step, 'iteration'))
    if args.batchsize != 32:
        warmup_attr_ratio = 0.1
        # NOTE: this is confusing but it means n_iter
        warmup_n_epoch = 1000
        lr_shift = chainerlp.extensions.ExponentialShift(
            'lr',
            0.1,
            init=args.lr * warmup_attr_ratio,
            warmup_attr_ratio=warmup_attr_ratio,
            warmup_n_epoch=warmup_n_epoch,
            schedule=args.step)
        trainer.extend(lr_shift, trigger=(1, 'iteration'))

    if comm.rank == 0:
        if not args.profiling:
            trainer.extend(DetectionVOCEvaluator(
                test_iter,
                model,
                use_07_metric=True,
                label_names=voc_bbox_label_names),
                           trigger=triggers.ManualScheduleTrigger(
                               args.step + [args.iteration], 'iteration'))

        log_interval = 10, 'iteration'
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.observe_value(
            'loss_scale',
            lambda trainer: trainer.updater.get_optimizer('main')._loss_scale),
                       trigger=log_interval)

        metrics = [
            'epoch', 'iteration', 'lr', 'main/loss', 'main/loss/loc',
            'main/loss/conf', 'validation/main/map'
        ]
        if args.dynamic_interval is not None:
            metrics.insert(2, 'loss_scale')

        trainer.extend(extensions.PrintReport(metrics), trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))

        trainer.extend(extensions.snapshot(),
                       trigger=(args.snapshot_per_n_iteration, 'iteration'))
        trainer.extend(extensions.snapshot_object(
            model, 'model_iter_{.updater.iteration}'),
                       trigger=(args.iteration, 'iteration'))

    if args.resume:
        serializers.load_npz(args.resume, trainer)

    hook = AdaLossMonitor(sample_per_n_iter=100,
                          verbose=args.verbose,
                          includes=['Grad', 'Deconvolution'])
    recorder.trainer = trainer
    hook.trainer = trainer

    with ExitStack() as stack:
        if comm.rank == 0:
            stack.enter_context(hook)
        trainer.run()

    # store recorded results
    if comm.rank == 0:  # NOTE: only export in the first rank
        recorder.export().to_csv(os.path.join(args.out, 'loss_scale.csv'))
        profiler.export().to_csv(os.path.join(args.out, 'profile.csv'))
        if sanity_checker:
            sanity_checker.export().to_csv(
                os.path.join(args.out, 'sanity_check.csv'))
        hook.export_history().to_csv(os.path.join(args.out, 'grad_stats.csv'))
Example #16
0
 def __init__(self, random=None):
     self.voc = VOCBboxDataset(year='2012', split='trainval').slice[:,
                                                                    'img']
     self.random = random
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--batchsize', type=int, default=4)
    parser.add_argument('--epoch', type=int, default=10)
    parser.add_argument('--mini', action="store_true")
    args = parser.parse_args()

    if hasattr(multiprocessing, 'set_start_method'):
        multiprocessing.set_start_method('forkserver')
        p = multiprocessing.Process()
        p.start()
        p.join()

    comm = chainermn.create_communicator('pure_nccl')
    print(comm.size)

    device = comm.intra_rank

    num_class = len(voc_bbox_label_names)

    data_augmentation_transform = DataAugmentationTransform(512)
    center_detection_transform = CenterDetectionTransform(512, num_class, 4)

    train = TransformDataset(
        ConcatenatedDataset(VOCBboxDataset(year='2007', split='trainval'),
                            VOCBboxDataset(year='2012', split='trainval')),
        data_augmentation_transform)

    if comm.rank == 0:
        train = TransformDataset(train, center_detection_transform)
        if args.mini:
            train = datasets.SubDataset(train, 0, 100)
    else:
        train = None
    train = chainermn.scatter_dataset(train, comm, shuffle=True)
    train_iter = chainer.iterators.MultiprocessIterator(train,
                                                        args.batchsize //
                                                        comm.size,
                                                        n_processes=2)

    if comm.rank == 0:
        test = VOCBboxDataset(year='2007',
                              split='test',
                              use_difficult=True,
                              return_difficult=True)
        if args.mini:
            test = datasets.SubDataset(test, 0, 20)
        test_iter = chainer.iterators.SerialIterator(test,
                                                     args.batchsize,
                                                     repeat=False,
                                                     shuffle=False)

    detector = CenterDetector(HourglassNet, 512, num_class)
    train_chain = CenterDetectorTrain(detector, 1, 0.1, 1, comm=comm)

    chainer.cuda.get_device_from_id(device).use()
    train_chain.to_gpu()

    optimizer = chainermn.create_multi_node_optimizer(Adam(amsgrad=True), comm)
    optimizer.setup(train_chain)

    updater = StandardUpdater(train_iter, optimizer, device=device)

    trainer = Trainer(updater, (args.epoch, 'epoch'))

    if comm.rank == 0:
        log_interval = 1, 'epoch'
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.PrintReport([
            'epoch',
            'iteration',
            'lr',
            'main/loss',
            'main/hm_loss',
            'main/wh_loss',
            'main/offset_loss',
            'validation/main/map',
        ]),
                       trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))
        trainer.extend(DetectionVOCEvaluator(test_iter,
                                             detector,
                                             use_07_metric=True,
                                             label_names=voc_bbox_label_names),
                       trigger=(1, 'epoch'))
        trainer.extend(extensions.snapshot_object(
            detector, 'detector{.updator.epoch:03}.npz'),
                       trigger=(1, 'epoch'))

    trainer.run()
Example #18
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpus', type=str, default="-1")
    parser.add_argument('--batchsize', type=int, default=2)
    parser.add_argument('--epoch', type=int, default=10)
    parser.add_argument('--mini', action="store_true")
    args = parser.parse_args()

    gpus = list(filter(lambda x: x >= 0, map(int, args.gpus.split(","))))

    num_class = len(voc_bbox_label_names)

    data_augmentation_transform = DataAugmentationTransform(512)
    center_detection_transform = CenterDetectionTransform(512, num_class, 4)

    train = TransformDataset(
        ConcatenatedDataset(
            VOCBboxDataset(year='2007', split='trainval'),
            VOCBboxDataset(year='2012', split='trainval')
        ),
        data_augmentation_transform
    )
    train = TransformDataset(train, center_detection_transform)
    if args.mini:
        train = datasets.SubDataset(train, 0, 100)
    train_iter = chainer.iterators.MultiprocessIterator(train, args.batchsize)

    test = VOCBboxDataset(
        year='2007', split='test',
        use_difficult=True, return_difficult=True)
    if args.mini:
        test = datasets.SubDataset(test, 0, 20)
    test_iter = chainer.iterators.SerialIterator(
        test, args.batchsize // len(gpus), repeat=False, shuffle=False)

    detector = CenterDetector(HourglassNet, 512, num_class)
    train_chain = CenterDetectorTrain(detector, 1, 0.1, 1)

    gpus.sort()
    first_gpu = gpus[0]
    remain_gpu = gpus[1:]
    train_chain.to_gpu(first_gpu)

    optimizer = Adam(amsgrad=True)
    optimizer.setup(train_chain)

    devices = {
        "main": first_gpu
    }

    for i, gpu in enumerate(remain_gpu):
        devices[f"{i + 2}"] = gpu

    updater = training.updaters.ParallelUpdater(
        train_iter,
        optimizer,
        devices=devices,
    )

    log_interval = 1, 'epoch'
    trainer = Trainer(updater, (args.epoch, 'epoch'))
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(extensions.PrintReport(
        [
            'epoch', 'iteration', 'lr',
            'main/loss', 'main/hm_loss', 'main/wh_loss', 'main/offset_loss',
            'validation/main/map',
        ]),
        trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(
        DetectionVOCEvaluator(
            test_iter, detector, use_07_metric=True,
            label_names=voc_bbox_label_names),
        trigger=(1, 'epoch'))
    trainer.extend(
        extensions.snapshot_object(detector, 'detector{.updater.epoch:03}.npz'),
        trigger=(1, 'epoch')
    )

    trainer.run()
Example #19
0
def main():
    parser = argparse.ArgumentParser(
        description='Chainer Multi-label classification')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=0,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=4,
                        help='Number of images in each mini-batch')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    args = parser.parse_args()

    model = get_resnet_50(len(voc_bbox_label_names))
    model.pick = 'fc6'
    train_chain = MultiLabelClassifier(model,
                                       loss_scale=len(voc_bbox_label_names))

    train = VOCBboxDataset(year='2007', split='trainval', use_difficult=False)
    train = TransformDataset(train, ('img', 'bbox'), bbox_to_multi_label)
    test = VOCBboxDataset(year='2007', split='test', use_difficult=False)
    test = TransformDataset(test, ('img', 'bbox'), bbox_to_multi_label)

    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.backends.cuda.get_device_from_id(args.gpu).use()
        train_chain.to_gpu()  # Copy the model to the GPU

    optimizer = chainer.optimizers.MomentumSGD(0.001)
    optimizer.setup(train_chain)

    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(1e-4))

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    test_iter = chainer.iterators.SerialIterator(test,
                                                 args.batchsize,
                                                 repeat=False,
                                                 shuffle=False)

    stop_trigger = (11, 'epoch')
    log_interval = (20, 'iteration')

    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                device=args.gpu,
                                                converter=converter)
    trainer = training.Trainer(updater, stop_trigger, out=args.out)
    trainer.extend(
        extensions.Evaluator(test_iter,
                             train_chain,
                             device=args.gpu,
                             converter=converter))
    trainer.extend(extensions.ExponentialShift('lr', 0.1),
                   trigger=triggers.ManualScheduleTrigger([8, 10], 'epoch'))

    trainer.extend(chainer.training.extensions.observe_lr(),
                   trigger=log_interval)
    trainer.extend(extensions.PrintReport([
        'lr',
        'epoch',
        'elapsed_time',
        'main/loss',
        'main/recall',
        'main/precision',
        'main/n_pred',
        'main/n_pos',
        'validation/main/loss',
        'validation/main/recall',
        'validation/main/precision',
        'validation/main/n_pred',
        'validation/main/n_pos',
    ]),
                   trigger=log_interval)

    trainer.extend(extensions.snapshot_object(model, 'snapshot_model.npz'))
    trainer.extend(extensions.LogReport(trigger=log_interval))

    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
 def setUp(self):
     self.dataset = VOCBboxDataset(split=self.split,
                                   year=self.year,
                                   use_difficult=self.use_difficult,
                                   return_difficult=self.return_difficult)
     self.n_out = 4 if self.return_difficult else 3
Example #21
0
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--model',
                      choices=('ssd300', 'ssd512'),
                      default='ssd300')
  parser.add_argument('--batchsize', type=int, default=32)
  parser.add_argument('--test-batchsize', type=int, default=16)
  parser.add_argument('--iteration', type=int, default=120000)
  parser.add_argument('--step', type=int, nargs='*', default=[80000, 100000])
  parser.add_argument('--gpu', type=int, default=-1)
  parser.add_argument('--out', default='result')
  parser.add_argument('--resume')
  parser.add_argument('--dtype',
                      type=str,
                      choices=dtypes.keys(),
                      default='float32',
                      help='Select the data type of the model')
  parser.add_argument('--model-dir',
                      default=None,
                      type=str,
                      help='Where to store models')
  parser.add_argument('--dataset-dir',
                      default=None,
                      type=str,
                      help='Where to store datasets')
  parser.add_argument('--dynamic-interval',
                      default=None,
                      type=int,
                      help='Interval for dynamic loss scaling')
  parser.add_argument('--init-scale',
                      default=1,
                      type=float,
                      help='Initial scale for ada loss')
  parser.add_argument('--loss-scale-method',
                      default='approx_range',
                      type=str,
                      help='Method for adaptive loss scaling')
  parser.add_argument('--scale-upper-bound',
                      default=32800,
                      type=float,
                      help='Hard upper bound for each scale factor')
  parser.add_argument('--accum-upper-bound',
                      default=32800,
                      type=float,
                      help='Accumulated upper bound for all scale factors')
  parser.add_argument('--update-per-n-iteration',
                      default=100,
                      type=int,
                      help='Update the loss scale value per n iteration')
  parser.add_argument('--snapshot-per-n-iteration',
                      default=10000,
                      type=int,
                      help='The frequency of taking snapshots')
  parser.add_argument('--n-uf', default=1e-3, type=float)
  parser.add_argument('--nosanity-check', default=False, action='store_true')
  parser.add_argument('--nouse-fp32-update',
                      default=False, action='store_true')
  parser.add_argument('--profiling', default=False, action='store_true')
  parser.add_argument('--verbose',
                      action='store_true',
                      default=False,
                      help='Verbose output')
  args = parser.parse_args()

  # Setting data types
  if args.dtype != 'float32':
    chainer.global_config.use_cudnn = 'never'
  chainer.global_config.dtype = dtypes[args.dtype]
  print('==> Setting the data type to {}'.format(args.dtype))

  # Initialize model
  if args.model == 'ssd300':
    model = SSD300(n_fg_class=len(voc_bbox_label_names),
                   pretrained_model='imagenet')
  elif args.model == 'ssd512':
    model = SSD512(n_fg_class=len(voc_bbox_label_names),
                   pretrained_model='imagenet')

  model.use_preset('evaluate')

  # Apply adaptive loss scaling
  recorder = AdaLossRecorder(sample_per_n_iter=100)
  profiler = Profiler()
  sanity_checker = SanityChecker(check_per_n_iter=100) if not args.nosanity_check else None
  # Update the model to support AdaLoss
  # TODO: refactorize
  model_ = AdaLossScaled(
      model,
      init_scale=args.init_scale,
      cfg={
          'loss_scale_method': args.loss_scale_method,
          'scale_upper_bound': args.scale_upper_bound,
          'accum_upper_bound': args.accum_upper_bound,
          'update_per_n_iteration': args.update_per_n_iteration,
          'recorder': recorder,
          'profiler': profiler,
          'sanity_checker': sanity_checker,
          'n_uf_threshold': args.n_uf,
      },
      transforms=[
          AdaLossTransformLinear(),
          AdaLossTransformConvolution2D(),
      ],
      verbose=args.verbose)

  # Finalize the model
  train_chain = MultiboxTrainChain(model_)
  if args.gpu >= 0:
    chainer.cuda.get_device_from_id(args.gpu).use()
    cp.random.seed(0)

    # NOTE: we have to transfer modules explicitly to GPU
    model.coder.to_gpu()
    model.extractor.to_gpu()
    model.multibox.to_gpu()

  # Prepare dataset
  if args.model_dir is not None:
    chainer.dataset.set_dataset_root(args.model_dir)
  train = TransformDataset(
      ConcatenatedDataset(VOCBboxDataset(year='2007', split='trainval'),
                          VOCBboxDataset(year='2012', split='trainval')),
      Transform(model.coder, model.insize, model.mean, dtype=dtypes[args.dtype]))
  # train_iter = chainer.iterators.MultiprocessIterator(
  #     train, args.batchsize) # , n_processes=8, n_prefetch=2)
  train_iter = chainer.iterators.MultithreadIterator(train, args.batchsize)
  # train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

  test = VOCBboxDataset(year='2007',
                        split='test',
                        use_difficult=True,
                        return_difficult=True)
  test_iter = chainer.iterators.SerialIterator(test,
                                               args.test_batchsize,
                                               repeat=False,
                                               shuffle=False)

  # initial lr is set to 1e-3 by ExponentialShift
  optimizer = chainer.optimizers.MomentumSGD()
  if args.dtype == 'mixed16':
    if not args.nouse_fp32_update:
      print('==> Using FP32 update for dtype=mixed16')
      optimizer.use_fp32_update()  # by default use fp32 update

    # HACK: support skipping update by existing loss scaling functionality
    if args.dynamic_interval is not None:
      optimizer.loss_scaling(interval=args.dynamic_interval, scale=None)
    else:
      optimizer.loss_scaling(interval=float('inf'), scale=None)
      optimizer._loss_scale_max = 1.0  # to prevent actual loss scaling

  optimizer.setup(train_chain)
  for param in train_chain.params():
    if param.name == 'b':
      param.update_rule.add_hook(GradientScaling(2))
    else:
      param.update_rule.add_hook(WeightDecay(0.0005))

  updater = training.updaters.StandardUpdater(train_iter,
                                              optimizer,
                                              device=args.gpu)
  trainer = training.Trainer(updater, (args.iteration, 'iteration'),
                             args.out)
  trainer.extend(extensions.ExponentialShift('lr', 0.1, init=1e-3),
                 trigger=triggers.ManualScheduleTrigger(
                     args.step, 'iteration'))

  trainer.extend(DetectionVOCEvaluator(test_iter,
                                       model,
                                       use_07_metric=True,
                                       label_names=voc_bbox_label_names),
                 trigger=triggers.ManualScheduleTrigger(
                     args.step + [args.iteration], 'iteration'))

  log_interval = 10, 'iteration'
  trainer.extend(extensions.LogReport(trigger=log_interval))
  trainer.extend(extensions.observe_lr(), trigger=log_interval)
  trainer.extend(extensions.observe_value(
      'loss_scale',
      lambda trainer: trainer.updater.get_optimizer('main')._loss_scale),
      trigger=log_interval)

  metrics = [
      'epoch', 'iteration', 'lr', 'main/loss', 'main/loss/loc',
      'main/loss/conf', 'validation/main/map'
  ]
  if args.dynamic_interval is not None:
    metrics.insert(2, 'loss_scale')
  trainer.extend(extensions.PrintReport(metrics), trigger=log_interval)
  trainer.extend(extensions.ProgressBar(update_interval=10))

  trainer.extend(extensions.snapshot(),
                 trigger=triggers.ManualScheduleTrigger(
                     args.step + [args.iteration], 'iteration'))
  trainer.extend(extensions.snapshot_object(
      model, 'model_iter_{.updater.iteration}'),
      trigger=(args.iteration, 'iteration'))

  if args.resume:
    serializers.load_npz(args.resume, trainer)

  hook = AdaLossMonitor(sample_per_n_iter=100,
                        verbose=args.verbose,
                        includes=['Grad', 'Deconvolution'])
  recorder.trainer = trainer
  hook.trainer = trainer

  with ExitStack() as stack:
    stack.enter_context(hook)
    trainer.run()

  recorder.export().to_csv(os.path.join(args.out, 'loss_scale.csv'))
  profiler.export().to_csv(os.path.join(args.out, 'profile.csv'))
  if sanity_checker:
    sanity_checker.export().to_csv(os.path.join(args.out, 'sanity_check.csv'))
  hook.export_history().to_csv(os.path.join(args.out, 'grad_stats.csv'))
Example #22
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('ssd300', 'ssd512'),
                        default='ssd300')
    parser.add_argument('--batchsize', type=int, default=32)
    parser.add_argument('--iteration', type=int, default=120000)
    parser.add_argument('--step', type=int, nargs='*', default=[80000, 100000])
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--out', default='result')
    parser.add_argument('--resume')
    args = parser.parse_args()

    if args.model == 'ssd300':
        model = SSD300(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model='imagenet')
    elif args.model == 'ssd512':
        model = SSD512(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model='imagenet')

    model.use_preset('evaluate')
    train_chain = MultiboxTrainChain(model)
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    train = TransformDataset(
        ConcatenatedDataset(VOCBboxDataset(year='2007', split='trainval'),
                            VOCBboxDataset(year='2012', split='trainval')),
        Transform(model.coder, model.insize, model.mean))
    train_iter = chainer.iterators.MultiprocessIterator(train, args.batchsize)

    test = VOCBboxDataset(year='2007',
                          split='test',
                          use_difficult=True,
                          return_difficult=True)
    test_iter = chainer.iterators.SerialIterator(test,
                                                 args.batchsize,
                                                 repeat=False,
                                                 shuffle=False)

    # initial lr is set to 1e-3 by ExponentialShift
    optimizer = chainer.optimizers.MomentumSGD()
    optimizer.setup(train_chain)
    for param in train_chain.params():
        if param.name == 'b':
            param.update_rule.add_hook(GradientScaling(2))
        else:
            param.update_rule.add_hook(WeightDecay(0.0005))

    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                device=args.gpu)
    trainer = training.Trainer(updater, (args.iteration, 'iteration'),
                               args.out)
    trainer.extend(extensions.ExponentialShift('lr', 0.1, init=1e-3),
                   trigger=triggers.ManualScheduleTrigger(
                       args.step, 'iteration'))

    trainer.extend(DetectionVOCEvaluator(test_iter,
                                         model,
                                         use_07_metric=True,
                                         label_names=voc_bbox_label_names),
                   trigger=triggers.ManualScheduleTrigger(
                       args.step + [args.iteration], 'iteration'))

    log_interval = 10, 'iteration'
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'lr', 'main/loss', 'main/loss/loc',
        'main/loss/conf', 'validation/main/map'
    ]),
                   trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.extend(extensions.snapshot(),
                   trigger=triggers.ManualScheduleTrigger(
                       args.step + [args.iteration], 'iteration'))
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'),
                   trigger=(args.iteration, 'iteration'))

    if args.resume:
        serializers.load_npz(args.resume, trainer)

    trainer.run()
Example #23
0
def main():
    parser = argparse.ArgumentParser(description='Chainer Darknet53 Train')
    parser.add_argument('--batchsize', '-b', type=int, default=8)
    parser.add_argument('--iteration', '-i', type=int, default=100000)
    parser.add_argument('--gpus', '-g', type=int, nargs='*', default=[])
    parser.add_argument('--out', '-o', default='darknet53-voc-result')
    parser.add_argument('--seed', default=0)
    parser.add_argument('--display_interval', type=int, default=100)
    parser.add_argument('--snapshot_interval', type=int, default=100)
    parser.add_argument('--validation_size', type=int, default=2048)
    args = parser.parse_args()

    print('GPUs: {}'.format(args.gpus))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# iteration: {}'.format(args.iteration))
    print('')

    random.seed(args.seed)
    np.random.seed(args.seed)

    darknet53 = Darknet53(20)
    model = L.Classifier(darknet53)
    device = -1
    if len(args.gpus) > 0:
        device = args.gpus[0]
        cuda.cupy.random.seed(args.seed)
        cuda.get_device_from_id(args.gpus[0]).use()
    if len(args.gpus) == 1:
        model.to_gpu()

    optimizer = chainer.optimizers.MomentumSGD(lr=0.001)
    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0005),
                       'hook_decay')

    train = VOCBboxDataset(split='train')
    test = VOCBboxDataset(split='val')
    train = YOLOVOCDataset(train,
                           classifier=True,
                           jitter=0.2,
                           hue=0.1,
                           sat=.75,
                           val=.75)
    test = YOLOVOCDataset(test, classifier=True, crop_size=(256, 256))
    test = test[np.random.permutation(np.arange(
        len(test)))[:min(args.validation_size, len(test))]]

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    test_iter = chainer.iterators.SerialIterator(test,
                                                 args.batchsize,
                                                 repeat=False,
                                                 shuffle=False)

    if len(args.gpus) <= 1:
        updater = training.StandardUpdater(train_iter,
                                           optimizer,
                                           device=device)
    else:
        devices = {'main': args.gpus[0]}
        for gpu in args.gpus[1:]:
            devices['gpu{}'.format(gpu)] = gpu
        updater = training.ParallelUpdater(train_iter,
                                           optimizer,
                                           devices=devices)

    trainer = training.Trainer(updater, (args.iteration, 'iteration'),
                               out=args.out)

    display_interval = (args.display_interval, 'iteration')
    snapshot_interval = (args.snapshot_interval, 'iteration')

    trainer.extend(extensions.Evaluator(test_iter, model, device=device),
                   trigger=display_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.LogReport(trigger=display_interval))
    if extensions.PlotReport.available():
        trainer.extend(
            extensions.PlotReport(['main/loss', 'validation/main/loss'],
                                  'iteration',
                                  display_interval,
                                  file_name='loss.png'))
        trainer.extend(
            extensions.PlotReport(
                ['main/accuracy', 'validation/main/accuracy'],
                'iteration',
                display_interval,
                file_name='accuracy.png'))

    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy', 'elapsed_time'
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=5))
    trainer.extend(extensions.snapshot_object(darknet53,
                                              'darknet53_snapshot.npz'),
                   trigger=training.triggers.MinValueTrigger(
                       'validation/main/loss', snapshot_interval))
    trainer.extend(extensions.snapshot_object(darknet53,
                                              'darknet53_final.npz'),
                   trigger=snapshot_interval)

    trainer.extend(DarknetShift(optimizer, 'poly', args.iteration))

    trainer.extend(CropSizeUpdater(train,
                                   [(4 + i) * 32 for i in range(0, 11)]))

    trainer.run()
Example #24
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('ssd300', 'ssd512'),
                        default='ssd300')
    parser.add_argument('--batchsize', type=int, default=32)
    parser.add_argument('--test-batchsize', type=int, default=16)
    parser.add_argument('--iteration', type=int, default=120000)
    parser.add_argument('--step', type=int, nargs='*', default=[80000, 100000])
    parser.add_argument('--out', default='result')
    parser.add_argument('--resume')
    args = parser.parse_args()

    comm = chainermn.create_communicator()
    device = comm.intra_rank

    if args.model == 'ssd300':
        model = SSD300(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model='imagenet')
    elif args.model == 'ssd512':
        model = SSD512(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model='imagenet')

    model.use_preset('evaluate')
    train_chain = MultiboxTrainChain(model)
    chainer.cuda.get_device_from_id(device).use()
    model.to_gpu()

    train = TransformDataset(
        ConcatenatedDataset(VOCBboxDataset(year='2007', split='trainval'),
                            VOCBboxDataset(year='2012', split='trainval')),
        ('img', 'mb_loc', 'mb_label'),
        Transform(model.coder, model.insize, model.mean))

    if comm.rank == 0:
        indices = np.arange(len(train))
    else:
        indices = None
    indices = chainermn.scatter_dataset(indices, comm, shuffle=True)
    train = train.slice[indices]

    # http://chainermn.readthedocs.io/en/latest/tutorial/tips_faqs.html#using-multiprocessiterator
    if hasattr(multiprocessing, 'set_start_method'):
        multiprocessing.set_start_method('forkserver')
    train_iter = chainer.iterators.MultiprocessIterator(train,
                                                        args.batchsize //
                                                        comm.size,
                                                        n_processes=2)

    if comm.rank == 0:
        test = VOCBboxDataset(year='2007',
                              split='test',
                              use_difficult=True,
                              return_difficult=True)
        test_iter = chainer.iterators.SerialIterator(test,
                                                     args.test_batchsize,
                                                     repeat=False,
                                                     shuffle=False)

    # initial lr is set to 1e-3 by ExponentialShift
    optimizer = chainermn.create_multi_node_optimizer(
        chainer.optimizers.MomentumSGD(), comm)
    optimizer.setup(train_chain)
    for param in train_chain.params():
        if param.name == 'b':
            param.update_rule.add_hook(GradientScaling(2))
        else:
            param.update_rule.add_hook(WeightDecay(0.0005))

    updater = training.updaters.StandardUpdater(train_iter,
                                                optimizer,
                                                device=device)
    trainer = training.Trainer(updater, (args.iteration, 'iteration'),
                               args.out)
    trainer.extend(extensions.ExponentialShift('lr', 0.1, init=1e-3),
                   trigger=triggers.ManualScheduleTrigger(
                       args.step, 'iteration'))

    if comm.rank == 0:
        trainer.extend(DetectionVOCEvaluator(test_iter,
                                             model,
                                             use_07_metric=True,
                                             label_names=voc_bbox_label_names),
                       trigger=triggers.ManualScheduleTrigger(
                           args.step + [args.iteration], 'iteration'))

        log_interval = 10, 'iteration'
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.PrintReport([
            'epoch', 'iteration', 'lr', 'main/loss', 'main/loss/loc',
            'main/loss/conf', 'validation/main/map'
        ]),
                       trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))

        trainer.extend(extensions.snapshot(),
                       trigger=triggers.ManualScheduleTrigger(
                           args.step + [args.iteration], 'iteration'))
        trainer.extend(extensions.snapshot_object(
            model, 'model_iter_{.updater.iteration}'),
                       trigger=(args.iteration, 'iteration'))

    if args.resume:
        serializers.load_npz(args.resume, trainer)

    trainer.run()
Example #25
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model', choices=('fpn', 'ssd300', 'ssd512'), default='fpn')
    parser.add_argument('--batchsize', type=int, default=32)
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--out', default='result')
    parser.add_argument('--data_dir', type=str, default='auto')
    parser.add_argument('--dataset', choices=['voc', 'coco'], default='voc')
    parser.add_argument('--lr', type=float, default=1e-3)
    parser.add_argument('--init_scale', type=float, default=1e-2)
    parser.add_argument('--resume')
    args = parser.parse_args()

    if args.dataset == 'voc':
        train = ConcatenatedDataset(
            VOCBboxDataset(
                year='2007',
                split='trainval',
                data_dir=join(args.data_dir, 'VOCdevkit/VOC2007')
                if args.data_dir != 'auto' else args.data_dir),
            VOCBboxDataset(
                year='2012',
                split='trainval',
                data_dir=join(args.data_dir, 'VOCdevkit/VOC2012')
                if args.data_dir != 'auto' else args.data_dir))
        test = VOCBboxDataset(
            year='2007',
            split='test',
            use_difficult=True,
            return_difficult=True,
            data_dir=join(args.data_dir, 'VOCdevkit/VOC2007')
            if args.data_dir != 'auto' else args.data_dir)

        label_names = voc_bbox_label_names
    elif args.dataset == 'coco':
        # todo: use train+valminusminival(=coco2017train)
        # https://github.com/chainer/chainercv/issues/651
        train = COCOBboxDataset(data_dir=args.data_dir,
                                split='train')
        test = COCOBboxDataset(data_dir=args.data_dir, split='val')
        label_names = coco_bbox_label_names

    if args.model == 'ssd300':
        model = SSD300(
            n_fg_class=len(label_names), pretrained_model='imagenet')
    elif args.model == 'ssd512':
        model = SSD512(
            n_fg_class=len(label_names), pretrained_model='imagenet')
    elif args.model == 'fpn':
        model = FPNSSD(
            n_fg_class=len(label_names), pretrained_model='imagenet', init_scale=args.init_scale)

    model.use_preset('evaluate')
    train_chain = MultiboxTrainChain(model)
    if args.gpu >= 0:
        chainer.backends.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    train = TransformDataset(
        train,
        Transform(model.coder, model.insize, model.mean))
    train_iter = chainer.iterators.MultithreadIterator(train, args.batchsize)

    test_iter = chainer.iterators.SerialIterator(
        test, args.batchsize, repeat=False, shuffle=False)

    # initial lr is set to 1e-3 by ExponentialShift
    optimizer = chainer.optimizers.MomentumSGD()
    optimizer.setup(train_chain)
    for param in train_chain.params():
        if param.name == 'b':
            param.update_rule.add_hook(GradientScaling(2))
        else:
            param.update_rule.add_hook(WeightDecay(0.0005))

    updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu)
    trainer = training.Trainer(updater, (120000, 'iteration'), args.out)
    trainer.extend(
        extensions.ExponentialShift('lr', 0.1, init=args.lr),
        trigger=triggers.ManualScheduleTrigger([80000, 100000], 'iteration'))

    trainer.extend(
        DetectionVOCEvaluator(
            test_iter,
            model,
            use_07_metric=True,
            label_names=label_names),
        trigger=(10000, 'iteration'))

    log_interval = 100, 'iteration'
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.observe_lr(), trigger=log_interval)
    trainer.extend(
        extensions.PrintReport([
            'epoch', 'iteration', 'lr', 'main/loss', 'main/loss/loc',
            'main/loss/conf', 'validation/main/map'
        ]),
        trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.extend(extensions.snapshot(), trigger=(10000, 'iteration'))
    trainer.extend(
        extensions.snapshot_object(model, 'model_iter_{.updater.iteration}'),
        trigger=(120000, 'iteration'))

    if args.resume:
        serializers.load_npz(args.resume, trainer)

    trainer.run()