Example #1
0
    def test_pretrained(self):
        kwargs = {
            'n_fg_class': self.n_fg_class,
            'pretrained_model': self.pretrained_model,
        }

        if self.pretrained_model == 'voc0712':
            valid = self.n_fg_class in {None, 20}

        if valid:
            YOLOv2(**kwargs)
        else:
            with self.assertRaises(ValueError):
                YOLOv2(**kwargs)
Example #2
0
def runYOLO():
    '''parser = argparse.ArgumentParser()
      parser.add_argument(
          '--model', choices=('yolo_v2', 'yolo_v3'),
          default='yolo_v2')
      parser.add_argument('--gpu', type=int, default=-1)
      parser.add_argument('--pretrained-model', default='voc0712')
      parser.add_argument('image')
      args = parser.parse_args()'''

    aimage = 'sample7.jpg'
    amodel = 'yolo_v2'
    apretrained_model = 'voc0712'
    agpu = -1

    if amodel == 'yolo_v2':
        model = YOLOv2(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model=apretrained_model)
    elif amodel == 'yolo_v3':
        model = YOLOv3(n_fg_class=len(voc_bbox_label_names),
                       pretrained_model=apretrained_model)

    if agpu >= 0:
        chainer.cuda.get_device_from_id(agpu).use()
        model.to_gpu()

    img = utils.read_image(aimage, color=True)
    bboxes, labels, scores = model.predict([img])
    bbox, label, score = bboxes[0], labels[0], scores[0]

    vis_bbox(img, bbox, label, score, label_names=voc_bbox_label_names)
Example #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model', choices=('yolo_v2', 'yolo_v2_tiny', 'yolo_v3'),
        default='yolo_v2')
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model', default='voc0712')
    parser.add_argument('image')
    args = parser.parse_args()

    if args.model == 'yolo_v2':
        model = YOLOv2(
            n_fg_class=len(voc_bbox_label_names),
            pretrained_model=args.pretrained_model)
    elif args.model == 'yolo_v2_tiny':
        model = YOLOv2Tiny(
            n_fg_class=len(voc_bbox_label_names),
            pretrained_model=args.pretrained_model)
    elif args.model == 'yolo_v3':
        model = YOLOv3(
            n_fg_class=len(voc_bbox_label_names),
            pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    bboxes, labels, scores = model.predict([img])
    bbox, label, score = bboxes[0], labels[0], scores[0]

    vis_bbox(
        img, bbox, label, score, label_names=voc_bbox_label_names)
    plt.show()
Example #4
0
def main():
    dataset = VOCBboxDataset(year='2007', split='test') \
        .slice[[29, 301, 189, 229], 'img']
    models = [
        ('Faster R-CNN', FasterRCNNVGG16(pretrained_model='voc07')),
        ('SSD300', SSD300(pretrained_model='voc0712')),
        ('SSD512', SSD512(pretrained_model='voc0712')),
        ('YOLOv2', YOLOv2(pretrained_model='voc0712')),
        ('YOLOv3', YOLOv3(pretrained_model='voc0712')),
    ]

    fig = plt.figure(figsize=(30, 20))
    for i, img in enumerate(dataset):
        for j, (name, model) in enumerate(models):
            bboxes, labels, scores = model.predict([img])
            bbox, label, score = bboxes[0], labels[0], scores[0]

            ax = fig.add_subplot(
                len(dataset), len(models), i * len(models) + j + 1)
            vis_bbox(
                img, bbox, label, score,
                label_names=voc_bbox_label_names, ax=ax
            )

            # Set MatplotLib parameters
            ax.set_aspect('equal')
            if i == 0:
                font = FontProperties()
                font.set_family('serif')
                font.set_size(35)
                ax.set_title(name, y=1.03, fontproperties=font)
            plt.axis('off')
            plt.tight_layout()

    plt.show()
Example #5
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model', choices=('yolo_v2', 'yolo_v3'),
        default='yolo_v2')
    parser.add_argument('--n_fg_class', type=int, default=80)
    parser.add_argument('darknetmodel')
    parser.add_argument('output')
    args = parser.parse_args()

    if args.model == 'yolo_v2':
        model = YOLOv2(n_fg_class=args.n_fg_class)
    elif args.model == 'yolo_v3':
        model = YOLOv3(n_fg_class=args.n_fg_class)

    with chainer.using_config('train', False):
        model(np.empty((1, 3, model.insize, model.insize), dtype=np.float32))

    with open(args.darknetmodel, mode='rb') as f:
        major = np.fromfile(f, dtype=np.int32, count=1)
        minor = np.fromfile(f, dtype=np.int32, count=1)
        np.fromfile(f, dtype=np.int32, count=1)  # revision
        assert(major * 10 + minor >= 2 and major < 1000 and minor < 1000)
        np.fromfile(f, dtype=np.int64, count=1)  # seen

        if args.model == 'yolo_v2':
            load_yolo_v2(f, model)
        elif args.model == 'yolo_v3':
            load_yolo_v3(f, model)

    serializers.save_npz(args.output, model)
Example #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained-model', default='voc0712')
    parser.add_argument('--out', '-o', type=str, default='yolo_dump')
    parser.add_argument('--verbose',
                        default=False,
                        action='store_true',
                        help='Verbose mode')
    args = parser.parse_args()
    model = YOLOv2(n_fg_class=len(voc_bbox_label_names),
                   pretrained_model=args.pretrained_model)

    x = chainer.Variable(np.random.random((1, 3, 416, 416)).astype(np.float32))
    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()
        x.to_gpu()

    retriever = chainer_trt.ModelRetriever(args.out, verbose=args.verbose)
    retriever.register_inputs(x, 'x')
    with chainer.using_config('train', False), chainer_trt.RetainHook():
        locs, objs, confs = model(x)

    retriever(locs, name='locs')
    retriever(objs, name='objs')
    retriever(confs, name='confs')
    retriever.save()
Example #7
0
    def __init__(self, opts):
        self.pretrained_models = ('voc0712', )
        assert opts[
            'pretrained_model'] in self.pretrained_models, "{} pretrained model doesn't exist".format(
                opts.pretrained_model)

        self.model = YOLOv2(n_fg_class=opts['n_classes'],
                            pretrained_model=opts['pretrained_model'])
 def __init__(self, gpu, model, nms_thresh= 0.45, score_thresh=0.6):
     
     self.gpu = gpu
     
     if model == 'yolo_v2_tiny':
         self.model = YOLOv2Tiny(
             n_fg_class=len(voc_bbox_label_names),
             pretrained_model='voc0712')
         
     elif model == 'yolo_v3':
         self.model = YOLOv3(
             n_fg_class=len(voc_bbox_label_names),
             pretrained_model='voc0712')
         
     elif model == 'ssd300':
         self.model = SSD300(
             n_fg_class=len(voc_bbox_label_names),
             pretrained_model='voc0712')        
         
     elif model == 'ssd512':
         self.model = SSD512(
             n_fg_class=len(voc_bbox_label_names),
             pretrained_model='voc0712')
         
     elif model == 'fasterrcnnvgg16':
         self.model = FasterRCNNVGG16(
             n_fg_class=len(coco_bbox_label_names),
             pretrained_model='voc0712')
         
     elif model == 'fasterrcnnfpnresnet50':
         self.model = FasterRCNNFPNResNet50(
             n_fg_class=len(coco_bbox_label_names),
             pretrained_model='coco')
         
     elif model == 'fasterrcnnfpnresnet101':
         self.model = FasterRCNNFPNResNet101(
             n_fg_class=len(coco_bbox_label_names),
             pretrained_model='coco')
     
     else:
         self.model = YOLOv2(
             n_fg_class=len(voc_bbox_label_names),
             pretrained_model='voc0712')
         
     #self.model.nms_thresh = nms_thresh
     #self.model.score_thresh = score_thresh
         
     if self.gpu >= 0:
         chainer.cuda.get_device_from_id(self.gpu).use()
         self.model.to_gpu()
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=0)
    parser.add_argument('--engine',
                        required=False,
                        help='TensorRT engine file. If None, chainer-based '
                        'inference will run')
    parser.add_argument('--n-try', '-n', type=int, default=1000)
    parser.add_argument('--chainer', action='store_true')
    parser.add_argument('image')
    args = parser.parse_args()

    model = YOLOv2(n_fg_class=len(voc_bbox_label_names),
                   pretrained_model='voc0712')
    img = utils.read_image(args.image, color=True)

    chainer.cuda.get_device_from_id(args.gpu).use()

    if args.engine is not None:
        # Key idea:
        # `predict` method applies some pre-processings and preparations,
        # runs forward-pass and some post-processings.
        # We want to re-use all of them without copy-and-pasting the code,
        # while only forward-pass runs with TensorRT.
        # solution: replace __call__ and let `predict` call it,
        # as if it is the original python based forward pass
        def run_infer(self, x):
            return tuple(chainer.Variable(t) for t in infer(x))

        infer = chainer_trt.Infer(args.engine)  # NOQA
        type(model).__call__ = run_infer
        print("Loaded TensorRT inference engine {}".format(args.engine))
    else:
        model.to_gpu()
        print("Run Chainer based inference")

    # Run inference once and get detections
    # (1st execution tends to be slow in CUDA)
    bboxes, labels, scores = model.predict([img])

    before = time.time()
    for _ in range(args.n_try):
        model.predict([img])
    after = time.time()
    print('{:.3f}ms/img'.format(1000 * (after - before) / args.n_try))

    bbox, label, score = bboxes[0], labels[0], scores[0]
    vis_bbox(img, bbox, label, score, label_names=voc_bbox_label_names)
    plt.show()
Example #10
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('yolo_v2', 'yolo_v2_tiny', 'yolo_v3'),
                        default='yolo_v3')
    parser.add_argument('--n-fg-class', type=int, default=7)
    parser.add_argument('--darknetmodel', default='yolo-obj_6000.weights')
    parser.add_argument('--output', default='accident_KitDashV_6000.npz')
    args = parser.parse_args()

    if args.model == 'yolo_v2':
        model = YOLOv2(n_fg_class=args.n_fg_class)


#    elif args.model == 'yolo_v2_tiny':
#        model = YOLOv2Tiny(n_fg_class=args.n_fg_class)
    elif args.model == 'yolo_v3':
        model = YOLOv3(n_fg_class=args.n_fg_class)

    with chainer.using_config('train', False):
        model(np.empty((1, 3, model.insize, model.insize), dtype=np.float32))

    with open(args.darknetmodel, mode='rb') as f:
        major = np.fromfile(f, dtype=np.int32, count=1)
        minor = np.fromfile(f, dtype=np.int32, count=1)
        np.fromfile(f, dtype=np.int32, count=1)  # revision
        if major * 10 + minor >= 2 and major < 1000 and minor < 1000:
            np.fromfile(f, dtype=np.int64, count=1)  # seen
        else:
            np.fromfile(f, dtype=np.int32, count=1)  # seen

        if args.model == 'yolo_v2':
            load_yolo_v2(f, model)
        elif args.model == 'yolo_v2_tiny':
            load_yolo_v2(f, model)
        elif args.model == 'yolo_v3':
            load_yolo_v3(f, model)

    serializers.save_npz(args.output, model)
Example #11
0
 def setUp(self):
     self.link = YOLOv2(n_fg_class=self.n_fg_class)
     self.insize = 416
     self.n_bbox = 13 * 13 * 5
Example #12
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model',
                        choices=('faster_rcnn', 'ssd300', 'ssd512', 'yolo_v2',
                                 'yolo_v2_tiny', 'yolo_v3'),
                        default='ssd300')
    parser.add_argument('--pretrained-model')
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--batchsize', type=int, default=32)
    args = parser.parse_args()

    if args.model == 'faster_rcnn':
        if args.pretrained_model:
            model = FasterRCNNVGG16(n_fg_class=len(voc_bbox_label_names),
                                    pretrained_model=args.pretrained_model)
        else:
            model = FasterRCNNVGG16(pretrained_model='voc07')
    elif args.model == 'ssd300':
        if args.pretrained_model:
            model = SSD300(n_fg_class=len(voc_bbox_label_names),
                           pretrained_model=args.pretrained_model)
        else:
            model = SSD300(pretrained_model='voc0712')
    elif args.model == 'ssd512':
        if args.pretrained_model:
            model = SSD512(n_fg_class=len(voc_bbox_label_names),
                           pretrained_model=args.pretrained_model)
        else:
            model = SSD512(pretrained_model='voc0712')
    elif args.model == 'yolo_v2':
        if args.pretrained_model:
            model = YOLOv2(n_fg_class=len(voc_bbox_label_names),
                           pretrained_model=args.pretrained_model)
        else:
            model = YOLOv2(pretrained_model='voc0712')
    elif args.model == 'yolo_v2_tiny':
        if args.pretrained_model:
            model = YOLOv2Tiny(n_fg_class=len(voc_bbox_label_names),
                               pretrained_model=args.pretrained_model)
        else:
            model = YOLOv2(pretrained_model='voc0712')
    elif args.model == 'yolo_v3':
        if args.pretrained_model:
            model = YOLOv3(n_fg_class=len(voc_bbox_label_names),
                           pretrained_model=args.pretrained_model)
        else:
            model = YOLOv3(pretrained_model='voc0712')

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    model.use_preset('evaluate')

    dataset = VOCBboxDataset(year='2007',
                             split='test',
                             use_difficult=True,
                             return_difficult=True)
    iterator = iterators.SerialIterator(dataset,
                                        args.batchsize,
                                        repeat=False,
                                        shuffle=False)

    in_values, out_values, rest_values = apply_to_iterator(model.predict,
                                                           iterator,
                                                           hook=ProgressHook(
                                                               len(dataset)))
    # delete unused iterators explicitly
    del in_values

    pred_bboxes, pred_labels, pred_scores = out_values
    gt_bboxes, gt_labels, gt_difficults = rest_values

    result = eval_detection_voc(pred_bboxes,
                                pred_labels,
                                pred_scores,
                                gt_bboxes,
                                gt_labels,
                                gt_difficults,
                                use_07_metric=True)

    print()
    print('mAP: {:f}'.format(result['map']))
    for l, name in enumerate(voc_bbox_label_names):
        if result['ap'][l]:
            print('{:s}: {:f}'.format(name, result['ap'][l]))
        else:
            print('{:s}: -'.format(name))