Example #1
0
 def test_concat_arrays_to_chainerx(self):
     device = 'native:0'
     self.check_concat_arrays(
         self.int_arrays, device,
         backend.ChainerxDevice(chainerx.get_device(device)), numpy.int64)
     self.check_concat_arrays(
         self.float_arrays, device,
         backend.ChainerxDevice(chainerx.get_device(device)), numpy.float64)
Example #2
0
def test_ascontiguousarray_from_chainerx_array_device():
    with chainerx.using_device(chainerx.get_device('native:0')):
        dev = chainerx.get_device('native:1')  # Non default one
        assert chainerx.get_default_device() is not dev

        a = chainerx.arange(10, device=dev)
        b = chainerx.ascontiguousarray(a)
        assert b.is_contiguous is True
        assert b.device is dev
Example #3
0
def test_chainerx_get_device():
    context = chainerx.Context()
    with chainerx.context_scope(context):
        device = chainerx.get_device('native:0')
        assert device.context is context
        assert device.name == 'native:0'
        assert device is chainerx.get_device('native', 0)
        assert device is chainerx.get_device(device)
        assert chainerx.get_default_device() is chainerx.get_device()
Example #4
0
def test_chainerx_get_device():
    context = chainerx.Context()
    with chainerx.context_scope(context):
        device = chainerx.get_device('native:0')
        assert device.context is context
        assert device.name == 'native:0'
        assert device is chainerx.get_device('native', 0)
        assert device is chainerx.get_device(device)
        assert chainerx.get_default_device() is chainerx.get_device()
Example #5
0
 def from_fallback_device(device):
     # TODO(niboshi): Write unit test
     assert isinstance(device, _backend.Device)
     if isinstance(device, _cpu.CpuDevice):
         return ChainerxDevice(chainerx.get_device('native', 0))
     if isinstance(device, cuda.GpuDevice):
         return ChainerxDevice(chainerx.get_device('cuda',
                                                   device.device.id))
     raise RuntimeError('Only CPU or GPU devices are allowed. '
                        'Actual: {}'.format(device))
Example #6
0
 def from_fallback_device(device):
     # TODO(niboshi): Write unit test
     assert isinstance(device, _backend.Device)
     if isinstance(device, _cpu.CpuDevice):
         return ChainerxDevice(chainerx.get_device('native', 0))
     if isinstance(device, cuda.GpuDevice):
         return ChainerxDevice(
             chainerx.get_device('cuda', device.device.id))
     raise RuntimeError(
         'Only CPU or GPU devices are allowed. '
         'Actual: {}'.format(device))
Example #7
0
 def test_concat_arrays_to_chainerx(self):
     device = 'native:0'
     self.check_concat_arrays(
         self.int_arrays,
         device,
         backend.ChainerxDevice(chainerx.get_device(device)),
         numpy.int64)
     self.check_concat_arrays(
         self.float_arrays,
         device,
         backend.ChainerxDevice(chainerx.get_device(device)),
         numpy.float64)
Example #8
0
def _get_device(device_spec):
    # Called from chainer.backend.get_device
    if not chainerx.is_available():
        return None
    if isinstance(device_spec, chainerx.Device):
        return ChainerxDevice(device_spec)
    if isinstance(device_spec, str):
        return ChainerxDevice(chainerx.get_device(device_spec))
    if (isinstance(device_spec, tuple) and len(device_spec) >= 1
            and isinstance(device_spec[0], str)):
        return ChainerxDevice(chainerx.get_device(*device_spec))
    return None
Example #9
0
def _get_device(device_spec):
    # Called from chainer.backend.get_device
    if not chainerx.is_available():
        return None
    if isinstance(device_spec, chainerx.Device):
        return ChainerxDevice(device_spec)
    if isinstance(device_spec, str):
        return ChainerxDevice(chainerx.get_device(device_spec))
    if (isinstance(device_spec, tuple) and len(device_spec) >= 1
            and isinstance(device_spec[0], str)):
        return ChainerxDevice(chainerx.get_device(*device_spec))
    return None
Example #10
0
def _array_to_chainerx(array, device=None):
    # If device is None, appropriate device is chosen according to the input
    # arrays.
    assert device is None or isinstance(device, chainerx.Device)

    if array is None:
        return None

    if array.dtype not in chainerx.all_dtypes:
        raise TypeError(
            'Dtype {} is not supported in ChainerX.'.format(array.dtype.name))

    if isinstance(array, chainerx.ndarray):
        if device is None:
            return array
        if device is array.device:
            return array
        return array.to_device(device)
    if isinstance(array, numpy.ndarray):
        if device is None:
            device = chainerx.get_device('native', 0)
        return chainerx.array(array, device=device, copy=False)
    if isinstance(array, cuda.ndarray):
        if device is None:
            device = chainerx.get_device('cuda', array.device.id)
        elif device.backend.name != 'cuda':
            # cupy to non-cuda backend
            # TODO(niboshi): Remove conversion to numpy when both CuPy and
            # ChainerX support the array interface.
            array = _cpu._to_cpu(array)
            return chainerx.array(array, device=device, copy=False)
        elif device.index != array.device.id:
            # cupy to cuda backend but different device
            array = cuda.to_gpu(array, device=device.index)
        # cupy to cuda backend with the same device
        return chainerx._core._fromrawpointer(
            array.data.mem.ptr,
            array.shape,
            array.dtype,
            array.strides,
            device,
            array.data.ptr - array.data.mem.ptr,
            array)
    if isinstance(array, intel64.mdarray):
        return _array_to_chainerx(numpy.array(array), device)
    if numpy.isscalar(array):
        return chainerx.asarray(array)

    raise TypeError(
        'Array cannot be converted into chainerx.ndarray'
        '\nActual type: {0}.'.format(type(array)))
    def from_fallback_device(device):
        """Returns a :class:`~chainer.backend.ChainerxDevice` corresponding \
to the fallback device.

        .. seealso::
            :data:`~chainer.backend.ChainerxDevice.fallback_device`
        """
        assert isinstance(device, _backend.Device)
        if isinstance(device, _cpu.CpuDevice):
            return ChainerxDevice(chainerx.get_device('native', 0))
        if isinstance(device, cuda.GpuDevice):
            return ChainerxDevice(chainerx.get_device('cuda',
                                                      device.device.id))
        raise RuntimeError('Only CPU or GPU devices are allowed. '
                           'Actual: {}'.format(device))
Example #12
0
    def test_init(self, backend_config):
        name = backend_config.chainerx_device
        chx_device = chainerx.get_device(name)

        device = backend.ChainerxDevice(chx_device)
        self.check_device(device, backend_config)
        assert device.device is chx_device
Example #13
0
def test_check_device_device_spec(shape, device_spec):
    dtype = 'float32'
    a = chainerx.empty(shape, dtype, device=device_spec)
    device = chainerx.get_device(device_spec)

    array_utils.check_device(a, device_spec)
    array_utils.check_device(a, device)
Example #14
0
def test_check_device_device_spec(shape, device_spec):
    dtype = 'float32'
    a = chainerx.empty(shape, dtype, device=device_spec)
    device = chainerx.get_device(device_spec)

    array_utils.check_device(a, device_spec)
    array_utils.check_device(a, device)
Example #15
0
    def test_backward_default_device(self):
        # Default device in backward should be determined by arrays,
        # otherwise, creation routines in backward do not create new arrays
        # on the proper device.

        device = chainerx.get_device('cuda:0')
        shape = (2, 3)
        dtype = numpy.float32
        x1 = chainerx.full(shape, 3, dtype, device=device)
        x2 = chainerx.full(shape, 5, dtype, device=device).require_grad()

        backward_call_new_array = []

        def backward_call_callback(call_arg):
            backward_call_new_array.append(chainerx.empty(shape, dtype))

        with chainerx.using_device('native:0'):
            # forward
            func = self.SimpleFunctionNode(backward_call_callback)
            y1, y2 = func.apply((x1, x2))

            # backward
            y2.backward()

        assert backward_call_new_array[0].device is device
Example #16
0
    def test_backward_default_device(self):
        # Default device in backward should be determined by arrays,
        # otherwise, creation routines in backward do not create new arrays
        # on the proper device.

        device = chainerx.get_device('cuda:0')
        shape = (2, 3)
        dtype = numpy.float32
        x1 = chainerx.full(shape, 3, dtype, device=device)
        x2 = chainerx.full(shape, 5, dtype, device=device).require_grad()

        backward_call_new_array = []

        def backward_call_callback(call_arg):
            backward_call_new_array.append(chainerx.empty(shape, dtype))

        with chainerx.using_device('native:0'):
            # forward
            func = self.SimpleFunctionNode(backward_call_callback)
            y1, y2 = func.apply((x1, x2))

            # backward
            y2.backward()

        assert backward_call_new_array[0].device is device
def _from_cupy(array):
    assert cupy is not None
    assert isinstance(array, cupy.ndarray)
    device = chainerx.get_device('cuda', array.device.id)
    return chainerx._core._fromrawpointer(array.data.mem.ptr, array.shape,
                                          array.dtype, array.strides, device,
                                          array.data.ptr - array.data.mem.ptr,
                                          array)
Example #18
0
def test_frombuffer_from_device_buffer(device):
    dtype = 'int32'

    device_buffer = chainerx.testing._DeviceBuffer(
        [1, 2, 3, 4, 5, 6], (2, 3), dtype)
    a = chainerx.frombuffer(device_buffer, dtype)
    e = chainerx.array([1, 2, 3, 4, 5, 6], dtype)

    chainerx.testing.assert_array_equal_ex(e, a)
    assert a.device is chainerx.get_device(device)
Example #19
0
def test_frombuffer_from_device_buffer(device):
    dtype = 'int32'

    device_buffer = chainerx.testing._DeviceBuffer(
        [1, 2, 3, 4, 5, 6], (2, 3), dtype)
    a = chainerx.frombuffer(device_buffer, dtype)
    e = chainerx.array([1, 2, 3, 4, 5, 6], dtype)

    chainerx.testing.assert_array_equal_ex(e, a)
    assert a.device is chainerx.get_device(device)
Example #20
0
    def test_from_fallback_device(self, backend_config):
        # Preparation: it depends on ChainerxDevice.fallback_device
        tmp_device = backend.ChainerxDevice(
            chainerx.get_device(backend_config.chainerx_device))
        fallback_device = tmp_device.fallback_device

        # Test
        device = backend.ChainerxDevice.from_fallback_device(fallback_device)
        self.check_device(device, backend_config)
        assert device.fallback_device == fallback_device
Example #21
0
    def check_device_spec_chainerx(self, device_spec, expected_device_name):
        device = backend.get_device(device_spec)
        assert isinstance(device, backend.ChainerxDevice)
        assert device.xp is chainerx
        assert isinstance(device.device, chainerx.Device)
        assert device.device.name == expected_device_name

        with backend.using_device(device_spec):
            # TODO(niboshi): Test the Chainer default device
            assert (chainerx.get_default_device() == chainerx.get_device(
                expected_device_name))
Example #22
0
def _from_cupy(array):
    assert cupy is not None
    assert isinstance(array, cupy.ndarray)
    device = chainerx.get_device('cuda', array.device.id)
    return chainerx._core._fromrawpointer(
        array.data.mem.ptr,
        array.shape,
        array.dtype,
        array.strides,
        device,
        array.data.ptr - array.data.mem.ptr,
        array)
Example #23
0
    def check_device_spec_chainerx(self, device_spec, expected_device_name):
        device = backend.get_device(device_spec)
        assert isinstance(device, backend.ChainerxDevice)
        assert device.xp is chainerx
        assert isinstance(device.device, chainerx.Device)
        assert device.device.name == expected_device_name

        with backend.using_device(device_spec):
            # TODO(niboshi): Test the Chainer default device
            assert (
                chainerx.get_default_device()
                == chainerx.get_device(expected_device_name))
Example #24
0
 def device(self):
     if self._device is None:
         if self.use_cuda:
             device = backend.GpuDevice.from_device_id(self.cuda_device)
         elif self.use_chainerx:
             device = backend.ChainerxDevice(
                 chainerx.get_device(self.chainerx_device))
         elif self.use_ideep != 'never':
             device = backend.Intel64Device()
         else:
             device = backend.CpuDevice()
         self._device = device
     return self._device
Example #25
0
def test_to_device():
    a = chainerx.ones((2,), chainerx.float32, device='native:0')
    dst_device = chainerx.get_device('native:1')

    b0 = a.to_device(dst_device)  # by device instance
    assert b0.device is dst_device
    chainerx.testing.assert_array_equal_ex(a, b0)

    b1 = a.to_device('native:1')  # by device name
    assert b1.device is dst_device
    chainerx.testing.assert_array_equal_ex(a, b1)

    b2 = a.to_device('native', 1)  # by backend name and index
    assert b2.device is dst_device
    chainerx.testing.assert_array_equal_ex(a, b2)
Example #26
0
def test_to_device():
    a = chainerx.ones((2,), chainerx.float32, device='native:0')
    dst_device = chainerx.get_device('native:1')

    b0 = a.to_device(dst_device)  # by device instance
    assert b0.device is dst_device
    chainerx.testing.assert_array_equal_ex(a, b0)

    b1 = a.to_device('native:1')  # by device name
    assert b1.device is dst_device
    chainerx.testing.assert_array_equal_ex(a, b1)

    b2 = a.to_device('native', 1)  # by backend name and index
    assert b2.device is dst_device
    chainerx.testing.assert_array_equal_ex(a, b2)
Example #27
0
def test_array_from_chainerx_array_with_device(
        src_dtype, dst_dtype, copy, device, dst_device_spec):
    t = array_utils.create_dummy_ndarray(
        chainerx, (2,), src_dtype, device=device)
    a = chainerx.array(t, dtype=dst_dtype, copy=copy, device=dst_device_spec)

    dst_device = chainerx.get_device(dst_device_spec)

    if not copy and src_dtype == dst_dtype and device is dst_device:
        assert t is a
    else:
        assert t is not a
        chainerx.testing.assert_array_equal_ex(
            a, t.to_device(dst_device).astype(dst_dtype))
        assert a.dtype == chainerx.dtype(dst_dtype)
        assert a.device is dst_device
Example #28
0
def test_array_from_chainerx_array_with_device(
        src_dtype, dst_dtype, copy, device, dst_device_spec):
    t = array_utils.create_dummy_ndarray(
        chainerx, (2,), src_dtype, device=device)
    a = chainerx.array(t, dtype=dst_dtype, copy=copy, device=dst_device_spec)

    dst_device = chainerx.get_device(dst_device_spec)

    if not copy and src_dtype == dst_dtype and device is dst_device:
        assert t is a
    else:
        assert t is not a
        chainerx.testing.assert_array_equal_ex(
            a, t.to_device(dst_device).astype(dst_dtype))
        assert a.dtype == chainerx.dtype(dst_dtype)
        assert a.device is dst_device
Example #29
0
def test_frombuffer_from_numpy_array(device):
    obj = array_utils.create_dummy_ndarray(
        numpy, (2, 3), 'int32', padding=False)

    a_chx = chainerx.frombuffer(obj, obj.dtype)
    a_np = numpy.frombuffer(obj, obj.dtype)

    chainerx.testing.assert_array_equal_ex(a_np, a_chx)
    assert a_chx.device is chainerx.get_device(device)

    # test buffer is shared
    obj += obj
    chainerx.testing.assert_array_equal_ex(obj.ravel(), a_chx)

    # test possibly freed memory
    obj_copy = obj.copy()
    del obj
    chainerx.testing.assert_array_equal_ex(obj_copy.ravel(), a_chx)
Example #30
0
def test_frombuffer_from_numpy_array(device):
    obj = array_utils.create_dummy_ndarray(
        numpy, (2, 3), 'int32', padding=False)

    a_chx = chainerx.frombuffer(obj, obj.dtype)
    a_np = numpy.frombuffer(obj, obj.dtype)

    chainerx.testing.assert_array_equal_ex(a_np, a_chx)
    assert a_chx.device is chainerx.get_device(device)

    # test buffer is shared
    obj += obj
    chainerx.testing.assert_array_equal_ex(obj.ravel(), a_chx)

    # test possibly freed memory
    obj_copy = obj.copy()
    del obj
    chainerx.testing.assert_array_equal_ex(obj_copy.ravel(), a_chx)
Example #31
0
def _check_array_from_chainerx_array_with_dtype(
        shape, src_dtype, dst_dtype_spec, copy, device=None):
    t = array_utils.create_dummy_ndarray(
        chainerx, shape, src_dtype, device=device)
    a = chainerx.array(t, dtype=dst_dtype_spec, copy=copy)

    src_dtype = chainerx.dtype(src_dtype)
    dst_dtype = src_dtype if dst_dtype_spec is None else chainerx.dtype(
        dst_dtype_spec)
    device = chainerx.get_device(device)

    if (not copy
            and src_dtype == dst_dtype
            and device is chainerx.get_default_device()):
        assert t is a
    else:
        assert t is not a
        chainerx.testing.assert_array_equal_ex(a, t.astype(dst_dtype))
        assert a.dtype == dst_dtype
        assert a.device is chainerx.get_default_device()
Example #32
0
def _check_array_from_chainerx_array_with_dtype(
        shape, src_dtype, dst_dtype_spec, copy, device=None):
    t = array_utils.create_dummy_ndarray(
        chainerx, shape, src_dtype, device=device)
    a = chainerx.array(t, dtype=dst_dtype_spec, copy=copy)

    src_dtype = chainerx.dtype(src_dtype)
    dst_dtype = src_dtype if dst_dtype_spec is None else chainerx.dtype(
        dst_dtype_spec)
    device = chainerx.get_device(device)

    if (not copy
            and src_dtype == dst_dtype
            and device is chainerx.get_default_device()):
        assert t is a
    else:
        assert t is not a
        chainerx.testing.assert_array_equal_ex(a, t.astype(dst_dtype))
        assert a.dtype == dst_dtype
        assert a.device is chainerx.get_default_device()
Example #33
0
def test_asarray_from_chainerx_array_with_device(src_dtype, dst_dtype, device,
                                                 dst_device_spec):
    t = array_utils.create_dummy_ndarray(chainerx, (2, ),
                                         src_dtype,
                                         device=device)
    a = chainerx.asarray(t, dtype=dst_dtype, device=dst_device_spec)

    dst_device = chainerx.get_device(dst_device_spec)

    if ((dst_dtype is None or src_dtype == dst_dtype)
            and (dst_device_spec is None or device is dst_device)):
        assert t is a
    else:
        assert t is not a
        if dst_dtype is None:
            dst_dtype = t.dtype
        chainerx.testing.assert_array_equal_ex(
            a,
            t.to_device(dst_device).astype(dst_dtype))
        assert a.dtype == chainerx.dtype(dst_dtype)
        assert a.device is dst_device
Example #34
0
    if xp is numpy and isinstance(dtype_spec, chainerx.dtype):
        dtype_spec = dtype_spec.name
    # Skip nan/inf -> integer conversion that would cause a cast error.
    if (not _is_all_finite(obj)
            and dtype_spec not in (None, Unspecified)
            and chainerx.dtype(dtype_spec).kind not in ('f', 'c')):
        return chainerx.testing.ignore()
    if dtype_spec is Unspecified:
        return xp.array(obj)
    else:
        return xp.array(obj, dtype_spec)


@pytest.mark.parametrize('obj', _array_params(_array_params_list))
@pytest.mark.parametrize(
    'device', [None, 'native:1', chainerx.get_device('native:1')])
def test_array_from_python_tuple_or_list_with_device(obj, device):
    a = chainerx.array(obj, 'float32', device=device)
    b = chainerx.array(obj, 'float32')
    chainerx.testing.assert_array_equal_ex(a, b)
    array_utils.check_device(a, device)


def _check_array_from_numpy_array(a_chx, a_np, device=None):
    assert a_chx.offset == 0
    array_utils.check_device(a_chx, device)

    # recovered data should be equal
    a_np_recovered = chainerx.to_numpy(a_chx)
    chainerx.testing.assert_array_equal_ex(
        a_chx, a_np_recovered, strides_check=False)
Example #35
0
def test_dummy_ndarray_device_spec(device_spec):
    a = array_utils.create_dummy_ndarray(
        chainerx, (2, 3), 'float32', device=device_spec)
    assert a.device is chainerx.get_device(device_spec)
Example #36
0
 def test_concat_tuples_to_chainerx(self, backend_config):
     device = chainerx.get_device('native:0')
     arrays = self.get_tuple_arrays_to_concat(backend_config)
     self.check_concat_tuples(
         arrays, device, backend.ChainerxDevice(device))
Example #37
0
def get_device(device_spec: types.DeviceSpec) -> Device:
    """Returns a device object.

    Args:
        device_spec (object): Device specifier.
            If a :class:`chainer.backend.Device` instance is given, it is
            returned intact. Otherwise the following values are supported:

            * ChainerX devices

              * A string representing a device.
                (ex. ``'native:0'``, ``'native'``)
              * A :class:`chainerx.Device` object.

            * CuPy

              * A string starts with ``'@cupy:'``.
                (ex. ``'@cupy:0'``)
              * A :class:`cupy.cuda.Device` object.

            * NumPy

              * The string ``'@numpy'``.

            * NumPy with Intel Architecture

              * The string ``'@intel64'``.
    """
    if isinstance(device_spec, Device):
        return device_spec

    if isinstance(device_spec, cuda._integer_types):
        return _get_device_cupy_or_numpy(device_spec)

    if chainerx.is_available() and isinstance(device_spec, chainerx.Device):
        return _chainerx.ChainerxDevice(device_spec)

    if cuda.available and isinstance(device_spec, cuda.Device):
        return cuda.GpuDevice(device_spec)

    if isinstance(device_spec, six.string_types):
        # '-1', '0', '1', ...
        try:
            int_device_spec = int(device_spec)
        except ValueError:
            pass
        else:
            return _get_device_cupy_or_numpy(int_device_spec)

        if device_spec.startswith('@'):
            # '@module:...'
            mod_name, colon, precise_spec = device_spec[1:].partition(':')
            if mod_name == 'numpy':
                if not colon:
                    return _cpu.CpuDevice()
            elif mod_name == 'cupy':
                if colon:
                    return cuda.GpuDevice.from_device_id(int(precise_spec))
            elif mod_name == 'intel64':
                if not colon:
                    return intel64.Intel64Device()
            raise ValueError(
                'Device specifiers starting with \'@\' must be followed by'
                ' a module name and depending on the module, module specific'
                ' precise device specifiers. Actual: {}'.format(device_spec))
        else:
            # String device specifier without '@' prefix is assumed to be a
            # ChainerX device.
            if not chainerx.is_available():
                raise RuntimeError(
                    'Tried to parse ChainerX device specifier \'{}\', '
                    'but ChainerX is not available. '
                    'Note that device specifiers without \'@\' prefix are '
                    'assumed to be ChainerX device '
                    'specifiers.'.format(device_spec))
            return _chainerx.ChainerxDevice(chainerx.get_device(device_spec))

    raise TypeError(
        'Device specifier must be a backend.Device, cuda.Device,'
        ' chainerx.Device, integer or a string. Actual: {}'.format(
            type(device_spec)))
Example #38
0
 def test_init_chainerx_with_cuda(self):
     device = chainerx.get_device('cuda:0')
     array = self._generate_array(chainerx, 'float64', device)
     assert array.device is device
Example #39
0
def check_device(a, device=None):
    if device is None:
        device = chainerx.get_default_device()
    elif isinstance(device, str):
        device = chainerx.get_device(device)
    assert a.device is device
Example #40
0
 def test_chainerx_device(self):
     chainerx_device = chainerx.get_device('native:0')
     self.check_device_spec_chainerx(chainerx_device, 'native:0')
Example #41
0
    if xp is numpy and isinstance(dtype_spec, chainerx.dtype):
        dtype_spec = dtype_spec.name
    # Skip nan/inf -> integer conversion that would cause a cast error.
    if (not _is_all_finite(obj)
            and dtype_spec not in (None, Unspecified)
            and chainerx.dtype(dtype_spec).kind not in ('f', 'c')):
        return chainerx.testing.ignore()
    if dtype_spec is Unspecified:
        return xp.array(obj)
    else:
        return xp.array(obj, dtype_spec)


@pytest.mark.parametrize('obj', _array_params(_array_params_list))
@pytest.mark.parametrize(
    'device', [None, 'native:1', chainerx.get_device('native:1')])
def test_array_from_python_tuple_or_list_with_device(obj, device):
    a = chainerx.array(obj, 'float32', device=device)
    b = chainerx.array(obj, 'float32')
    chainerx.testing.assert_array_equal_ex(a, b)
    array_utils.check_device(a, device)


def _check_array_from_numpy_array(a_chx, a_np, device=None):
    assert a_chx.offset == 0
    array_utils.check_device(a_chx, device)

    # recovered data should be equal
    a_np_recovered = chainerx.to_numpy(a_chx)
    chainerx.testing.assert_array_equal_ex(
        a_chx, a_np_recovered, strides_check=False)
Example #42
0
def _get_chainerx_device(device_spec):
    # Returns chainerx.Device
    if isinstance(device_spec, chainerx.Device):
        return device_spec
    return chainerx.get_device(device_spec)
Example #43
0
 def test_init_chainerx_with_cuda(self):
     device = chainerx.get_device('cuda:0')
     array = self._generate_array(chainerx, 'float64', device)
     assert array.device is device
Example #44
0
        assert array._debug_flat_data == expected_data_list

    assert array.is_contiguous

    array_utils.check_device(array, device)


@chainerx.testing.parametrize_dtype_specifier('dtype_spec')
def test_init(shape, dtype_spec):
    array = chainerx.ndarray(shape, dtype_spec)
    _check_array(array, dtype_spec, shape)


@pytest.mark.parametrize(
    'device',
    [None, 'native:1', chainerx.get_device('native:1')])
@chainerx.testing.parametrize_dtype_specifier('dtype_spec')
def test_init_with_device(shape, dtype_spec, device):
    array = chainerx.ndarray(shape, dtype_spec, device=device)
    _check_array(array, dtype_spec, shape, device=device)


@pytest.mark.parametrize('value', [
    0, 1, -1, 0.1, 0.9, -0.1, -0.9, 1.1, -1.1, 1.9, -1.9, True, False,
    float('inf'), -float('inf'),
    float('nan'), -0.0
])
@pytest.mark.parametrize('shape', [(), (1, ), (1, 1, 1)])
@pytest.mark.parametrize_device(['native:0', 'cuda:0'])
def test_cast_scalar(device, value, shape, dtype):
    np_dtype = numpy.dtype(dtype)
Example #45
0
 def test_init_chainerx_with_default_device(self):
     device = chainerx.get_device('native:1')
     with chainerx.using_device(device):
         array = self._generate_array(chainerx, 'float64')
     assert array.device is device
Example #46
0
 def test_concat_tuples_to_chainerx(self, backend_config):
     device = chainerx.get_device('native:0')
     arrays = self.get_tuple_arrays_to_concat(backend_config)
     self.check_concat_tuples(
         arrays, device, backend.ChainerxDevice(device))
Example #47
0
 def test_chainerx_device(self):
     chainerx_device = chainerx.get_device('native:0')
     self.check_device_spec_chainerx(chainerx_device, 'native:0')
Example #48
0
 def test_init_chainerx_with_default_device(self):
     device = chainerx.get_device('native:1')
     with chainerx.using_device(device):
         array = self._generate_array(chainerx, 'float64')
     assert array.device is device
Example #49
0
def _get_chainerx_device(device_spec):
    # Returns chainerx.Device
    if isinstance(device_spec, chainerx.Device):
        return device_spec
    return chainerx.get_device(device_spec)
Example #50
0
def test_dummy_ndarray_device_spec(device_spec):
    a = array_utils.create_dummy_ndarray(chainerx, (2, 3),
                                         'float32',
                                         device=device_spec)
    assert a.device is chainerx.get_device(device_spec)
Example #51
0
def get_device(device_spec):
    # type: (types.DeviceSpec) -> Device
    """Returns a device object.

    Args:
        device_spec (object): Device specifier. If a :class:`chainer.Device`
            instance is given, it is returned intact. Otherwise the following
            values are supported:

            * ChainerX devices

              * A string representing a device.
                (ex. ``'native:0'``, ``'native'``)
              * A :class:`chainerx.Device` object.

            * CuPy

              * A string starts with ``'@cupy:'``.
                (ex. ``'@cupy:0'``)
              * A :class:`cupy.cuda.Device` object.

            * NumPy

              * The string ``'@numpy'``.

            * NumPy with Intel Architecture

              * The string ``'@intel64'``.
    """
    if isinstance(device_spec, Device):
        return device_spec

    if isinstance(device_spec, cuda._integer_types):
        return _get_device_cupy_or_numpy(device_spec)

    if chainerx.is_available() and isinstance(device_spec, chainerx.Device):
        return _chainerx.ChainerxDevice(device_spec)

    if cuda.available and isinstance(device_spec, cuda.Device):
        return cuda.GpuDevice(device_spec)

    if isinstance(device_spec, six.string_types):
        # '-1', '0', '1', ...
        try:
            int_device_spec = int(device_spec)
        except ValueError:
            pass
        else:
            return _get_device_cupy_or_numpy(int_device_spec)

        if device_spec.startswith('@'):
            # '@module:...'
            mod_name, colon, precise_spec = device_spec[1:].partition(':')
            if mod_name == 'numpy':
                if not colon:
                    return _cpu.CpuDevice()
            elif mod_name == 'cupy':
                if colon:
                    return cuda.GpuDevice.from_device_id(int(precise_spec))
            elif mod_name == 'intel64':
                if not colon:
                    return intel64.Intel64Device()

        elif chainerx.is_available():
            return _chainerx.ChainerxDevice(chainerx.get_device(device_spec))

    raise ValueError('Invalid device specifier: {}'.format(device_spec))
Example #52
0
def get_device(device_spec):
    # type: (types.DeviceSpec) -> Device
    """Returns a device object.

    Args:
        device_spec (object): Device specifier.
            If a :class:`chainer.backend.Device` instance is given, it is
            returned intact. Otherwise the following values are supported:

            * ChainerX devices

              * A string representing a device.
                (ex. ``'native:0'``, ``'native'``)
              * A :class:`chainerx.Device` object.

            * CuPy

              * A string starts with ``'@cupy:'``.
                (ex. ``'@cupy:0'``)
              * A :class:`cupy.cuda.Device` object.

            * NumPy

              * The string ``'@numpy'``.

            * NumPy with Intel Architecture

              * The string ``'@intel64'``.
    """
    if isinstance(device_spec, Device):
        return device_spec

    if isinstance(device_spec, cuda._integer_types):
        return _get_device_cupy_or_numpy(device_spec)

    if chainerx.is_available() and isinstance(device_spec, chainerx.Device):
        return _chainerx.ChainerxDevice(device_spec)

    if cuda.available and isinstance(device_spec, cuda.Device):
        return cuda.GpuDevice(device_spec)

    if isinstance(device_spec, six.string_types):
        # '-1', '0', '1', ...
        try:
            int_device_spec = int(device_spec)
        except ValueError:
            pass
        else:
            return _get_device_cupy_or_numpy(int_device_spec)

        if device_spec.startswith('@'):
            # '@module:...'
            mod_name, colon, precise_spec = device_spec[1:].partition(':')
            if mod_name == 'numpy':
                if not colon:
                    return _cpu.CpuDevice()
            elif mod_name == 'cupy':
                if colon:
                    return cuda.GpuDevice.from_device_id(int(precise_spec))
            elif mod_name == 'intel64':
                if not colon:
                    return intel64.Intel64Device()

        elif chainerx.is_available():
            return _chainerx.ChainerxDevice(chainerx.get_device(device_spec))

    raise ValueError('Invalid device specifier: {}'.format(device_spec))