Example #1
0
def _california(reduce=False):
    """ Load California dataset from .mat """
    mat = loadmat("data/California/UiT_HCD_California_2017.mat")

    t1 = np.array(mat["t1_L8_clipped"], dtype=np.float32)
    t2 = np.array(mat["logt2_clipped"], dtype=np.float32)
    change_mask = tf.convert_to_tensor(mat["ROI"], dtype=tf.bool)
    assert t1.shape[:2] == t2.shape[:2] == change_mask.shape[:2]
    if change_mask.ndim == 2:
        change_mask = change_mask[..., np.newaxis]
    if reduce:
        print("Reducing")
        reduction_ratios = (4, 4)
        new_dims = list(
            map(lambda a, b: a // b, change_mask.shape, reduction_ratios))
        t1 = tf.cast(tf.image.resize(t1, new_dims, antialias=True),
                     dtype=tf.float32)
        t2 = tf.cast(tf.image.resize(t2, new_dims, antialias=True),
                     dtype=tf.float32)
        change_mask = tf.cast(
            tf.image.resize(tf.cast(change_mask, tf.uint8),
                            new_dims,
                            antialias=True),
            tf.bool,
        )

    t1, t2, change_mask = (
        remove_borders(t1, 2),
        remove_borders(t2, 2),
        remove_borders(change_mask, 2),
    )

    return t1, t2, change_mask
Example #2
0
def _france(reduce=True):
    """ Load France dataset from .mat """
    mat = loadmat("data/France/France.mat")

    t1 = np.array(mat["t1"], dtype=np.single)
    t2 = np.array(mat["t2"], dtype=np.single)
    t1, t2 = _clip(t1), _clip(t2)
    change_mask = tf.convert_to_tensor(mat["ROI"], dtype=tf.bool)
    assert t1.shape[:2] == t2.shape[:2] == change_mask.shape[:2]
    if change_mask.ndim == 2:
        change_mask = change_mask[..., np.newaxis]
    if reduce:
        print("Reducing")
        reduction_ratios = (5, 5)
        new_dims = list(
            map(lambda a, b: a // b, change_mask.shape, reduction_ratios))
        t1 = tf.cast(tf.image.resize(t1, new_dims, antialias=True),
                     dtype=tf.float32)
        t2 = tf.cast(tf.image.resize(t2, new_dims, antialias=True),
                     dtype=tf.float32)
        change_mask = tf.cast(
            tf.image.resize(tf.cast(change_mask, tf.uint8),
                            new_dims,
                            antialias=True),
            tf.bool,
        )
    t1, t2, change_mask = (
        remove_borders(t1, 2),
        remove_borders(t2, 2),
        remove_borders(change_mask, 2),
    )

    return t1, t2, change_mask
def fetch_CGAN(name, **kwargs):
    """
        Input:
            name - dataset name, should be in DATASETS
            kwargs - config {key: value} pairs.
                     Key should be in DATASET_DEFAULT_CONFIG
        Output:
            training_data - tf.data.Dataset with (x, y, prior)
                            shapes like (inf, patch_size, patch_size, ?)
            evaluation_data - tf.data.Dataset with (x, y, change_map)
                              shapes (1, h, w, ?)
            channels - tuple (c_x, c_y), number of channels for domains x and y
    """
    ps = kwargs.get("patch_size")
    y_im, x_im, target_cm = DATASETS[name](prepare_data[name])
    if not tf.config.list_physical_devices("GPU"):
        dataset = [
            tf.image.central_crop(tensor, 0.1)
            for tensor in [x_im, y_im, target_cm]
        ]
    else:
        dataset = [x_im, y_im, target_cm]
    chs = [tensor.shape[-1] for tensor in dataset]
    dataset = [remove_borders(tensor, ps) for tensor in dataset]
    dataset = [tf.expand_dims(tensor, 0) for tensor in dataset]
    evaluation_data = tf.data.Dataset.from_tensor_slices(tuple(dataset))
    dataset = [image_in_patches(tensor, ps) for tensor in dataset]
    tot_patches = dataset[0].shape[0]
    return dataset[0], dataset[1], evaluation_data, (chs[0],
                                                     chs[1]), tot_patches
Example #4
0
def _italy(reduce=False):
    """ Load Italy dataset from .mat """
    mat = loadmat("data/Italy/Italy.mat")

    t1 = np.array(mat["t1"], dtype=np.single)
    t2 = np.array(mat["t2"], dtype=np.single)
    change_mask = np.array(mat["ROI"], dtype=np.bool)
    if t1.shape[-1] == 3:
        t1 = t1[..., 0]
    t1, t2, change_mask = (
        remove_borders(t1, 2),
        remove_borders(t2, 2),
        remove_borders(change_mask, 2),
    )
    t1, t2 = _clip(t1[..., np.newaxis]), _clip(t2)
    change_mask = tf.convert_to_tensor(change_mask, dtype=tf.bool)
    assert t1.shape[:2] == t2.shape[:2] == change_mask.shape[:2]
    if change_mask.ndim == 2:
        change_mask = change_mask[..., np.newaxis]
    change_mask = change_mask[..., :1]
    return t1, t2, change_mask
Example #5
0
def _texas(clip=True):
    """ Load Texas dataset from .mat """
    mat = loadmat("data/Texas/Cross-sensor-Bastrop-data.mat")

    t1 = np.array(mat["t1_L5"], dtype=np.single)
    t2 = np.array(mat["t2_ALI"], dtype=np.single)
    if clip:
        print("clipping")
        t1, t2 = _clip(t1), _clip(t2)
    change_mask = tf.convert_to_tensor(mat["ROI_1"], dtype=tf.bool)
    assert t1.shape[:2] == t2.shape[:2] == change_mask.shape[:2]
    if change_mask.ndim == 2:
        change_mask = change_mask[..., np.newaxis]

    t1, t2, change_mask = (
        remove_borders(t1, 2),
        remove_borders(t2, 2),
        remove_borders(change_mask, 2),
    )

    return t1, t2, change_mask