Example #1
0
    def g10_line_plot_gdp(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        gdp = self.get_GDP_QoQ(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 GDP"
        gp.units = 'Rebased'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(
            gp.scale_factor) + '.png'
        gdp.columns = [x.split('-')[0] for x in gdp.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United Kingdom']

        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
        tsc = TimeSeriesCalcs()
        gdp = gdp / 100
        gdp = tsc.create_mult_index_from_prices(gdp)
        pf.plot_generic_graph(gdp, type='line', adapter='pythalesians', gp=gp)
Example #2
0
    def usa_plot_une(self, start_date, finish_date):
        country_group = 'usa-states'
        source = 'bloomberg'

        une = self.get_UNE(start_date,
                           finish_date,
                           country_group,
                           source='bloomberg')
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'USA-states'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'usa'
        gp.plotly_projection = 'albers usa'
        gp.plotly_world_readable = False
        gp.plotly_url = country_group + "-unemployment"

        gp.title = "USA Unemployment"
        gp.units = 'pc'

        pf.plot_generic_graph(une, type='choropleth', adapter='plotly', gp=gp)
Example #3
0
    def g10_plot_gdp_cpi_une(self, start_date, finish_date, data_type='cpi'):
        country_group = 'g10'

        if data_type == 'cpi':
            df = self.get_CPI_YoY(start_date, finish_date, country_group)
        elif data_type == 'gdp':
            df = self.get_GDP_QoQ(start_date, finish_date, country_group)
        elif data_type == 'une':
            df = self.get_UNE(start_date, finish_date, country_group)

        df = self.hist_econ_data_factory.grasp_coded_entry(df, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-" + data_type
        gp.title = "G10 " + data_type
        gp.units = '%'

        pf.plot_generic_graph(df, type='choropleth', adapter='plotly', gp=gp)
    def g10_plot_gdp_cpi_une(self, start_date, finish_date, data_type = 'cpi'):
        country_group = 'g10'

        if data_type == 'cpi':
            df = self.get_CPI_YoY(start_date, finish_date, country_group)
        elif data_type == 'gdp':
            df = self.get_GDP_QoQ(start_date, finish_date, country_group)
        elif data_type == 'une':
            df = self.get_UNE(start_date, finish_date, country_group)

        df = self.hist_econ_data_factory.grasp_coded_entry(df, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-" + data_type
        gp.title = "G10 " + data_type
        gp.units = '%'

        pf.plot_generic_graph(df, type = 'choropleth', adapter = 'plotly', gp = gp)
    def g10_line_plot_une(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        une = self.get_UNE(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 Unemployment Rate (%)"
        gp.units = '%'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(gp.scale_factor) + '.png'
        une.columns = [x.split('-')[0] for x in une.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United States']

        pf.plot_generic_graph(une, type = 'line', adapter = 'pythalesians', gp = gp)
Example #6
0
    def g10_line_plot_une(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        une = self.get_UNE(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 Unemployment Rate (%)"
        gp.units = '%'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(
            gp.scale_factor) + '.png'
        une.columns = [x.split('-')[0] for x in une.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United States']

        pf.plot_generic_graph(une, type='line', adapter='pythalesians', gp=gp)
    def usa_plot_une(self, start_date, finish_date):
        country_group = 'usa-states'; source = 'bloomberg'

        une = self.get_UNE(start_date, finish_date, country_group, source = 'bloomberg')
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'USA-states'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'usa'
        gp.plotly_projection = 'albers usa'
        gp.plotly_world_readable = False
        gp.plotly_url = country_group + "-unemployment"

        gp.title = "USA Unemployment"
        gp.units = 'pc'

        pf.plot_generic_graph(une, type = 'choropleth', adapter = 'plotly', gp = gp)
    def europe_plot_une(self, start_date, finish_date):
        country_group = 'all-europe'

        une = self.get_UNE(start_date, finish_date, country_group)
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'europe'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'europe'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-unemployment"; gp.title = "Europe Unemployment"
        gp.units = '%'

        pf.plot_generic_graph(une, type = 'choropleth', adapter = 'plotly', gp = gp)
Example #9
0
    def world_plot_cpi(self, start_date, finish_date):
        country_group = 'world-liquid'

        cpi = self.get_CPI_YoY(start_date, finish_date, country_group)
        cpi = self.hist_econ_data_factory.grasp_coded_entry(cpi, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = str(country_group) + "-cpi"
        gp.title = "World Liquid CPI YoY"
        gp.units = '%'

        pf.plot_generic_graph(cpi, type='choropleth', adapter='plotly', gp=gp)
Example #10
0
    def europe_plot_une(self, start_date, finish_date):
        country_group = 'all-europe'

        une = self.get_UNE(start_date, finish_date, country_group)
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'europe'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'europe'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-unemployment"
        gp.title = "Europe Unemployment"
        gp.units = '%'

        pf.plot_generic_graph(une, type='choropleth', adapter='plotly', gp=gp)
    def g10_line_plot_gdp(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        gdp = self.get_GDP_QoQ(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 GDP"
        gp.units = 'Rebased'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(gp.scale_factor) + '.png'
        gdp.columns = [x.split('-')[0] for x in gdp.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United Kingdom']

        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
        tsc = TimeSeriesCalcs()
        gdp = gdp / 100
        gdp = tsc.create_mult_index_from_prices(gdp)
        pf.plot_generic_graph(gdp, type = 'line', adapter = 'pythalesians', gp = gp)
    def world_plot_cpi(self, start_date, finish_date):
        country_group = 'world-liquid'

        cpi = self.get_CPI_YoY(start_date, finish_date, country_group)
        cpi = self.hist_econ_data_factory.grasp_coded_entry(cpi, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = str(country_group) + "-cpi"
        gp.title = "World Liquid CPI YoY"
        gp.units = '%'

        pf.plot_generic_graph(cpi, type = 'choropleth', adapter = 'plotly', gp = gp)
    df = hist.grasp_coded_entry(df, -1)

    from chartesians.graphs import PlotFactory
    from chartesians.graphs.graphproperties import GraphProperties

    gp = GraphProperties()
    pf = PlotFactory()

    gp.plotly_location_mode = 'USA-states'
    gp.plotly_choropleth_field = 'Val'
    gp.plotly_scope = 'usa'
    gp.plotly_projection = 'albers usa'
    gp.plotly_url = country_group + data_type.replace(' ', '-')
    gp.plotly_world_readable = False
    gp.title = title
    gp.units = 'Value'

    # do a map plot by US state
    pf.plot_generic_graph(df, type = 'choropleth', adapter = 'cufflinks', gp = gp)

#### uses CommonEconDataFactory to get more common forms of economic data and plot
####
if True:
    logger = LoggerManager.getLogger(__name__)

    cedf = CommonEconDataFactory()
    start_date = '01 Jan 2014'
    finish_date = datetime.datetime.utcnow()

    # select as appropriate!
    # cedf.g10_plot_gdp_cpi_une(start_date, finish_date)
    df = hist.grasp_coded_entry(df, -1)

    from chartesians.graphs import PlotFactory
    from chartesians.graphs.graphproperties import GraphProperties

    gp = GraphProperties()
    pf = PlotFactory()

    gp.plotly_location_mode = 'USA-states'
    gp.plotly_choropleth_field = 'Val'
    gp.plotly_scope = 'usa'
    gp.plotly_projection = 'albers usa'
    gp.plotly_url = country_group + data_type.replace(' ', '-')
    gp.plotly_world_readable = False
    gp.title = title
    gp.units = 'Value'

    # do a map plot by US state
    pf.plot_generic_graph(df, type='choropleth', adapter='cufflinks', gp=gp)

#### uses CommonEconDataFactory to get more common forms of economic data and plot
####
if True:
    logger = LoggerManager.getLogger(__name__)

    cedf = CommonEconDataFactory()
    start_date = '01 Jan 2014'
    finish_date = datetime.datetime.utcnow()

    # select as appropriate!
    # cedf.g10_plot_gdp_cpi_une(start_date, finish_date)