Example #1
0
def class_balance(data_path: str, split_type: str):
    # Update args
    args.val_fold_index, args.test_fold_index = 1, 2
    args.split_type = 'predetermined'

    # Load data
    data = get_data(path=args.data_path,
                    smiles_columns=args.smiles_column,
                    target_columns=args.target_columns)
    args.task_names = args.target_columns or get_task_names(
        path=args.data_path, smiles_columns=args.smiles_column)

    # Average class sizes
    all_class_sizes = {'train': [], 'val': [], 'test': []}

    for i in range(10):
        print(f'Fold {i}')

        # Update args
        data_name = os.path.splitext(os.path.basename(data_path))[0]
        args.folds_file = f'/data/rsg/chemistry/yangk/lsc_experiments_dump_splits/data/{data_name}/{split_type}/fold_{i}/0/split_indices.pckl'

        if not os.path.exists(args.folds_file):
            print(f'Fold indices do not exist')
            continue

        # Split data
        train_data, val_data, test_data = split_data(
            data=data, split_type=args.split_type, args=args)

        # Determine class balance
        for data_split, split_name in [(train_data, 'train'),
                                       (val_data, 'val'), (test_data, 'test')]:
            class_sizes = get_class_sizes(data_split)
            print(f'Class sizes for {split_name}')

            for i, task_class_sizes in enumerate(class_sizes):
                print(
                    f'{args.task_names[i]} '
                    f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
                )

            all_class_sizes[split_name].append(class_sizes)

        print()

    # Mean and std across folds
    for split_name in ['train', 'val', 'test']:
        print(f'Average class sizes for {split_name}')

        mean_class_sizes, std_class_sizes = np.mean(
            all_class_sizes[split_name],
            axis=0), np.std(all_class_sizes[split_name], axis=0)

        for i, (mean_task_class_sizes, std_task_class_sizes) in enumerate(
                zip(mean_class_sizes, std_class_sizes)):
            print(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {mean_size * 100:.2f}% +/- {std_size * 100:.2f}%" for cls, (mean_size, std_size) in enumerate(zip(mean_task_class_sizes, std_task_class_sizes)))}'
            )
Example #2
0
def run_split_data(args: Args):
    # Load raw data
    with open(args.data_path) as f:
        reader = csv.reader(f)
        header = next(reader)
        lines = list(reader)

    # Load SMILES
    smiles = get_smiles(path=args.data_path, smiles_columns=args.smiles_column)

    # Make sure lines and smiles line up
    assert len(lines) == len(smiles)
    assert all(s in line for smile, line in zip(smiles, lines) for s in smile)

    # Create data
    data = []
    for smile, line in tqdm(zip(smiles, lines), total=len(smiles)):
        datapoint = MoleculeDatapoint(smiles=smile)
        datapoint.line = line
        data.append(datapoint)
    data = MoleculeDataset(data)

    train, val, test = split_data(data=data,
                                  split_type=args.split_type,
                                  sizes=args.split_sizes,
                                  seed=args.seed)

    makedirs(args.save_dir)

    for name, dataset in [('train', train), ('val', val), ('test', test)]:
        with open(os.path.join(args.save_dir, f'{name}.csv'), 'w') as f:
            writer = csv.writer(f)
            writer.writerow(header)
            for datapoint in dataset:
                writer.writerow(datapoint.line)
Example #3
0
 def test_random_split(self):
     """Testing the random split with seed 0"""
     train, val, test = split_data(data=self.dataset)
     self.assertEqual(
         train.smiles(),
         [['CO', 'CCO'], ['CO', 'CCCO'], ['CC', 'CCC'], ['CCCN', 'CCCCN'],
          ['CN', 'CCN'], ['CCN', 'CCCN'], ['CCC', 'CN'], ['C', 'CC']])
Example #4
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(
            path=args.separate_test_path,
            args=args,
            features_path=args.separate_test_features_path,
            atom_descriptors_path=args.separate_test_atom_descriptors_path,
            bond_features_path=args.separate_test_bond_features_path,
            phase_features_path=args.separate_test_phase_features_path,
            smiles_columns=args.smiles_columns,
            logger=logger)
    if args.separate_val_path:
        val_data = get_data(
            path=args.separate_val_path,
            args=args,
            features_path=args.separate_val_features_path,
            atom_descriptors_path=args.separate_val_atom_descriptors_path,
            bond_features_path=args.separate_val_bond_features_path,
            phase_features_path=args.separate_val_phase_features_path,
            smiles_columns=args.smiles_columns,
            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              num_folds=args.num_folds,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             num_folds=args.num_folds,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            num_folds=args.num_folds,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(
            data_path=args.data_path,
            save_dir=args.save_dir,
            task_names=args.task_names,
            features_path=args.features_path,
            train_data=train_data,
            val_data=val_data,
            test_data=test_data,
            smiles_columns=args.smiles_columns,
            logger=logger,
        )

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    if args.atom_descriptor_scaling and args.atom_descriptors is not None:
        atom_descriptor_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_atom_descriptors=True)
        val_data.normalize_features(atom_descriptor_scaler,
                                    scale_atom_descriptors=True)
        test_data.normalize_features(atom_descriptor_scaler,
                                     scale_atom_descriptors=True)
    else:
        atom_descriptor_scaler = None

    if args.bond_feature_scaling and args.bond_features_size > 0:
        bond_feature_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_bond_features=True)
        val_data.normalize_features(bond_feature_scaler,
                                    scale_bond_features=True)
        test_data.normalize_features(bond_feature_scaler,
                                     scale_bond_features=True)
    else:
        bond_feature_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        scaler = train_data.normalize_targets()
    elif args.dataset_type == 'spectra':
        debug(
            'Normalizing spectra and excluding spectra regions based on phase')
        args.spectra_phase_mask = load_phase_mask(args.spectra_phase_mask_path)
        for dataset in [train_data, test_data, val_data]:
            data_targets = normalize_spectra(
                spectra=dataset.targets(),
                phase_features=dataset.phase_features(),
                phase_mask=args.spectra_phase_mask,
                excluded_sub_value=None,
                threshold=args.spectra_target_floor,
            )
            dataset.set_targets(data_targets)
        scaler = None
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        set_cache_graph(True)
        num_workers = 0
    else:
        set_cache_graph(False)
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers)

    if args.class_balance:
        debug(
            f'With class_balance, effective train size = {train_data_loader.iter_size:,}'
        )

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        # Optionally, overwrite weights:
        if args.checkpoint_frzn is not None:
            debug(
                f'Loading and freezing parameters from {args.checkpoint_frzn}.'
            )
            model = load_frzn_model(model=model,
                                    path=args.checkpoint_frzn,
                                    current_args=args,
                                    logger=logger)

        debug(model)

        if args.checkpoint_frzn is not None:
            debug(f'Number of unfrozen parameters = {param_count(model):,}')
            debug(f'Total number of parameters = {param_count_all(model):,}')
        else:
            debug(f'Number of parameters = {param_count_all(model):,}')

        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), model, scaler,
                        features_scaler, atom_descriptor_scaler,
                        bond_feature_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metrics=args.metrics,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            for metric, scores in val_scores.items():
                # Average validation score
                avg_val_score = np.nanmean(scores)
                debug(f'Validation {metric} = {avg_val_score:.6f}')
                writer.add_scalar(f'validation_{metric}', avg_val_score,
                                  n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names, scores):
                        debug(
                            f'Validation {task_name} {metric} = {val_score:.6f}'
                        )
                        writer.add_scalar(f'validation_{task_name}_{metric}',
                                          val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir,
                                             MODEL_FILE_NAME), model, scaler,
                                features_scaler, atom_descriptor_scaler,
                                bond_feature_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric, scores in test_scores.items():
            avg_test_score = np.nanmean(scores)
            info(f'Model {model_idx} test {metric} = {avg_test_score:.6f}')
            writer.add_scalar(f'test_{metric}', avg_test_score, 0)

            if args.show_individual_scores and args.dataset_type != 'spectra':
                # Individual test scores
                for task_name, test_score in zip(args.task_names, scores):
                    info(
                        f'Model {model_idx} test {task_name} {metric} = {test_score:.6f}'
                    )
                    writer.add_scalar(f'test_{task_name}_{metric}', test_score,
                                      n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    for metric, scores in ensemble_scores.items():
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(scores)
        info(f'Ensemble test {metric} = {avg_ensemble_test_score:.6f}')

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, scores):
                info(
                    f'Ensemble test {task_name} {metric} = {ensemble_score:.6f}'
                )

    # Save scores
    with open(os.path.join(args.save_dir, 'test_scores.json'), 'w') as f:
        json.dump(ensemble_scores, f, indent=4, sort_keys=True)

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(
            data={'smiles': test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [
                pred[i] for pred in avg_test_preds
            ]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir,
                                                 'test_preds.csv'),
                                    index=False)

    return ensemble_scores
Example #5
0
def run_sklearn(args: SklearnTrainArgs,
                data: MoleculeDataset,
                logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a scikit-learn model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.SklearnTrainArgs` object containing arguments for
                 loading data and training the scikit-learn model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`metrics` to a list of values for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    if args.model_type == 'svm' and data.num_tasks() != 1:
        raise ValueError(
            f'SVM can only handle single-task data but found {data.num_tasks()} tasks'
        )

    debug(f'Splitting data with seed {args.seed}')
    # Need to have val set so that train and test sets are the same as when doing MPN
    train_data, _, test_data = split_data(data=data,
                                          split_type=args.split_type,
                                          seed=args.seed,
                                          sizes=args.split_sizes,
                                          num_folds=args.num_folds,
                                          args=args)

    debug(
        f'Total size = {len(data):,} | train size = {len(train_data):,} | test size = {len(test_data):,}'
    )

    debug('Computing morgan fingerprints')
    morgan_fingerprint = get_features_generator('morgan')
    for dataset in [train_data, test_data]:
        for datapoint in tqdm(dataset, total=len(dataset)):
            datapoint.set_features(
                morgan_fingerprint(mol=datapoint.smiles,
                                   radius=args.radius,
                                   num_bits=args.num_bits))

    debug('Building model')
    if args.dataset_type == 'regression':
        if args.model_type == 'random_forest':
            model = RandomForestRegressor(n_estimators=args.num_trees,
                                          n_jobs=-1)
        elif args.model_type == 'svm':
            model = SVR()
        else:
            raise ValueError(f'Model type "{args.model_type}" not supported')
    elif args.dataset_type == 'classification':
        if args.model_type == 'random_forest':
            model = RandomForestClassifier(n_estimators=args.num_trees,
                                           n_jobs=-1,
                                           class_weight=args.class_weight)
        elif args.model_type == 'svm':
            model = SVC()
        else:
            raise ValueError(f'Model type "{args.model_type}" not supported')
    else:
        raise ValueError(f'Dataset type "{args.dataset_type}" not supported')

    debug(model)

    model.train_args = args.as_dict()

    debug('Training')
    if args.single_task:
        scores = single_task_sklearn(model=model,
                                     train_data=train_data,
                                     test_data=test_data,
                                     metrics=args.metrics,
                                     args=args,
                                     logger=logger)
    else:
        scores = multi_task_sklearn(model=model,
                                    train_data=train_data,
                                    test_data=test_data,
                                    metrics=args.metrics,
                                    args=args,
                                    logger=logger)

    for metric in args.metrics:
        info(f'Test {metric} = {np.nanmean(scores[metric])}')

    return scores
Example #6
0
def run_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param logger: A logger to record output.
    :return: A list of model scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    data = get_data(path=args.data_path, args=args, logger=logger)
    validate_dataset_type(data, dataset_type=args.dataset_type)
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(train_data=train_data,
                           val_data=val_data,
                           test_data=test_data,
                           data_path=args.data_path,
                           save_dir=args.save_dir,
                           smiles_column=args.smiles_column)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(
                        f'Validation {task_name} {args.metric} = {val_score:.6f}'
                    )
                    writer.add_scalar(f'validation_{task_name}_{args.metric}',
                                      val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(
                    f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                )
                writer.add_scalar(f'test_{task_name}_{args.metric}',
                                  test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    return ensemble_scores
Example #7
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f"Splitting data with seed {args.seed}")
    # if args.separate_test_path:
    #    test_data = get_data(
    #        path=args.separate_test_path,
    #        args=args,
    #        features_path=args.separate_test_features_path,
    #        atom_descriptors_path=args.separate_test_atom_descriptors_path,
    #        bond_features_path=args.separate_test_bond_features_path,
    #        smiles_columns=args.smiles_columns,
    #        logger=logger,
    #    )
    # if args.separate_val_path:
    #    val_data = get_data(
    #        path=args.separate_val_path,
    #        args=args,
    #        features_path=args.separate_val_features_path,
    #        atom_descriptors_path=args.separate_val_atom_descriptors_path,
    #        bond_features_path=args.separate_val_bond_features_path,
    #        smiles_columns=args.smiles_columns,
    #        logger=logger,
    #    )

    # if args.separate_val_path and args.separate_test_path:
    #    train_data = data
    # elif args.separate_val_path:
    #    train_data, _, test_data = split_data(
    #        data=data,
    #        split_type=args.split_type,
    #        sizes=(0.8, 0.0, 0.2),
    #        seed=args.seed,
    #        num_folds=args.num_folds,
    #        args=args,
    #        logger=logger,
    #    )
    # elif args.separate_test_path:
    #    train_data, val_data, _ = split_data(
    #        data=data,
    #        split_type=args.split_type,
    #        sizes=(0.8, 0.2, 0.0),
    #        seed=args.seed,
    #        num_folds=args.num_folds,
    #        args=args,
    #        logger=logger,
    #    )
    # else:  # Default
    train_data, val_data, test_data = split_data(
        data=data,
        split_type=args.split_type,
        sizes=args.split_sizes,
        seed=args.seed,
        num_folds=args.num_folds,
        args=args,
        logger=logger,
    )

    if args.dataset_type == "classification":
        class_sizes = get_class_sizes(data)
        debug("Class sizes")
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f"{args.task_names[i]} "
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(
            data_path=args.data_path,
            save_dir=args.save_dir,
            task_names=args.task_names,
            features_path=args.features_path,
            train_data=train_data,
            val_data=val_data,
            test_data=test_data,
            smiles_columns=args.smiles_columns,
        )

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    if args.atom_descriptor_scaling and args.atom_descriptors is not None:
        atom_descriptor_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_atom_descriptors=True)
        val_data.normalize_features(atom_descriptor_scaler,
                                    scale_atom_descriptors=True)
        test_data.normalize_features(atom_descriptor_scaler,
                                     scale_atom_descriptors=True)
    else:
        atom_descriptor_scaler = None

    if args.bond_feature_scaling and args.bond_features_size > 0:
        bond_feature_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_bond_features=True)
        val_data.normalize_features(bond_feature_scaler,
                                    scale_bond_features=True)
        test_data.normalize_features(bond_feature_scaler,
                                     scale_bond_features=True)
    else:
        bond_feature_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f"Total size = {len(data):,} | "
        f"train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}"
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == "regression":
        debug("Fitting scaler")
        scaler = train_data.normalize_targets()
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == "multiclass":
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        set_cache_graph(True)
        num_workers = 0
    else:
        set_cache_graph(False)
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(
        dataset=train_data,
        batch_size=args.batch_size,
        num_workers=num_workers,
        class_balance=args.class_balance,
        shuffle=True,
        seed=args.seed,
    )
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers)

    if args.class_balance:
        debug(
            f"With class_balance, effective train size = {train_data_loader.iter_size:,}"
        )

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f"model_{model_idx}")
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f"Loading model {model_idx} from {args.checkpoint_paths[model_idx]}"
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f"Building model {model_idx}")
            model = MoleculeModel(args)

        debug(model)
        debug(f"Number of parameters = {param_count(model):,}")
        if args.cuda:
            debug("Moving model to cuda")
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(
            os.path.join(save_dir, MODEL_FILE_NAME),
            model,
            scaler,
            features_scaler,
            atom_descriptor_scaler,
            bond_feature_scaler,
            args,
        )

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float("inf") if args.minimize_score else -float("inf")
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f"Epoch {epoch}")

            n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer,
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(
                model=model,
                data_loader=val_data_loader,
                num_tasks=args.num_tasks,
                metrics=args.metrics,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger,
            )

            for metric, scores in val_scores.items():
                # Average validation score
                avg_val_score = np.nanmean(scores)
                debug(f"Validation {metric} = {avg_val_score:.6f}")
                writer.add_scalar(f"validation_{metric}", avg_val_score,
                                  n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names, scores):
                        debug(
                            f"Validation {task_name} {metric} = {val_score:.6f}"
                        )
                        writer.add_scalar(f"validation_{task_name}_{metric}",
                                          val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if (args.minimize_score and avg_val_score < best_score
                    or not args.minimize_score and avg_val_score > best_score):
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(
                    os.path.join(save_dir, MODEL_FILE_NAME),
                    model,
                    scaler,
                    features_scaler,
                    atom_descriptor_scaler,
                    bond_feature_scaler,
                    args,
                )

        # Evaluate on test set using model with best validation score
        info(
            f"Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}"
        )
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metrics=args.metrics,
            dataset_type=args.dataset_type,
            logger=logger,
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric, scores in test_scores.items():
            avg_test_score = np.nanmean(scores)
            info(f"Model {model_idx} test {metric} = {avg_test_score:.6f}")
            writer.add_scalar(f"test_{metric}", avg_test_score, 0)

            if args.show_individual_scores:
                # Individual test scores
                for task_name, test_score in zip(args.task_names, scores):
                    info(
                        f"Model {model_idx} test {task_name} {metric} = {test_score:.6f}"
                    )
                    writer.add_scalar(f"test_{task_name}_{metric}", test_score,
                                      n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metrics=args.metrics,
        dataset_type=args.dataset_type,
        logger=logger,
    )

    for metric, scores in ensemble_scores.items():
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(scores)
        info(f"Ensemble test {metric} = {avg_ensemble_test_score:.6f}")

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, scores):
                info(
                    f"Ensemble test {task_name} {metric} = {ensemble_score:.6f}"
                )

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(
            data={"smiles": test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [
                pred[i] for pred in avg_test_preds
            ]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir,
                                                 "test_preds.csv"),
                                    index=False)

    return ensemble_scores
Example #8
0
 def test_repeated_smiles(self):
     """Testing the random split with repeated smiles"""
     train, val, test = split_data(data=self.dataset,
                                   sizes=(0.4, 0.4, 0.2),
                                   split_type='random_with_repeated_smiles')
     self.assertEqual(test.smiles(), [['CO', 'CCCO'], ['CO', 'CCO']])
Example #9
0
 def test_split_4_0_6(self):
     """Testing the random split with an empty set"""
     train, val, test = split_data(data=self.dataset, sizes=(0.4, 0, 0.6))
     self.assertEqual(val.smiles(), [])
Example #10
0
 def test_split_4_4_2(self):
     """Testing the random split with changed sizes"""
     train, val, test = split_data(data=self.dataset, sizes=(0.4, 0.4, 0.2))
     self.assertEqual(
         train.smiles(),
         [['CO', 'CCO'], ['CO', 'CCCO'], ['CC', 'CCC'], ['CCCN', 'CCCCN']])
Example #11
0
 def test_three_splits_provided(self):
     with self.assertRaises(ValueError):
         train, val, test = split_data(data=self.dataset, sizes=(0.8, 0.2))
Example #12
0
 def test_splits_sum1(self):
     with self.assertRaises(ValueError):
         train, val, test = split_data(data=self.dataset,
                                       sizes=(0.4, 0.8, 0.2))