def predict(model: nn.Module,
            data: MoleculeDataset,
            batch_size: int,
            scaler: StandardScaler = None,
            uncertainty: bool = False) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data: A MoleculeDataset.
    :param batch_size: Batch size.
    :param scaler: A StandardScaler object fit on the training targets.
    :param uncertainty: Whether uncertainty values should be returned.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """
    model.eval()

    preds = []

    num_iters, iter_step = len(data), batch_size

    for i in trange(0, num_iters, iter_step):
        # Prepare batch
        mol_batch = MoleculeDataset(data[i:i + batch_size])
        smiles_batch, features_batch = mol_batch.smiles(), mol_batch.features()

        # Run model
        batch = smiles_batch

        with torch.no_grad():
            batch_preds = model(batch, features_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

    if model.uncertainty:
        p = []
        c = []
        for i in range(len(preds)):
            p.append([preds[i][j] for j in range(len(preds[i])) if j % 2 == 0])
            c.append([preds[i][j] for j in range(len(preds[i])) if j % 2 == 1])

        if scaler is not None:
            p = scaler.inverse_transform(p).tolist()
            c = (scaler.stds**2 * c).tolist()

        if uncertainty:
            return p, c

        return p

    if scaler is not None:
        preds = scaler.inverse_transform(preds).tolist()

    return preds
Example #2
0
def load_scalers(path: str) -> Tuple[StandardScaler, StandardScaler]:
    """
    Loads the scalers a model was trained with.

    :param path: Path where model checkpoint is saved.
    :return: A tuple with the data scaler and the features scaler.
    """
    state = torch.load(path, map_location=lambda storage, loc: storage)

    scaler = StandardScaler(state['data_scaler']['means'],
                            state['data_scaler']['stds']) if state['data_scaler'] is not None else None
    features_scaler = StandardScaler(state['features_scaler']['means'],
                                     state['features_scaler']['stds'],
                                     replace_nan_token=0) if state['features_scaler'] is not None else None

    return scaler, features_scaler
Example #3
0
def save_predictions(save_dir: str,
                     train_data: MolPairDataset,
                     val_data: MolPairDataset,
                     test_data: MolPairDataset,
                     train_preds: List[List[float]],
                     val_preds: List[List[float]],
                     test_preds: List[List[float]],
                     task_names: List[str],
                     scaler: StandardScaler = None) -> None:
    """
    Saves predictions to csv file for entire model.

    Any of the datasets can be absent. They will not be saved in that case.
    """
    with open(os.path.join(save_dir, 'preds.csv'), 'w') as f:
        writer = csv.writer(f)
        header = ['SMILE1', 'SMILE2', 'SPLIT'] + task_names + ['PRED_' + task for task in task_names]
        writer.writerow(header)

        splits = ['train', 'val', 'test']
        dataSplits = [train_data, val_data, test_data]
        predSplits = [train_preds, val_preds, test_preds]
        for k, split in enumerate(splits):
            if dataSplits[k] is None:
                continue
            smiles = dataSplits[k].smiles()
            targets = dataSplits[k].targets()
            # Inverse scale if regression and only for training data
            if k == 0 and scaler is not None:
                targets = scaler.inverse_transform(targets)

            preds = predSplits[k]
            for i in range(len(smiles)):
                row = [smiles[i][0], smiles[i][1], split] + targets[i] + preds[i]
                writer.writerow(row)
def predict_MCdepth(model: nn.Module, data_loader: MoleculeDataLoader,
                    args: TrainArgs, scaler: StandardScaler,
                    d) -> List[List[float]]:
    """
    makes a random prediction given a certain depth, d
    """

    # set model to eval mode
    model.eval()

    preds = []

    for batch in data_loader:
        batch: MoleculeDataset
        mol_batch, features_batch = batch.batch_graph(), batch.features()

        with torch.no_grad():
            _, batch_preds_list, _, _ = model(mol_batch,
                                              features_batch,
                                              sample=True)

        batch_preds = batch_preds_list[d]
        batch_preds = batch_preds.data.cpu().numpy()

        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

    return preds
Example #5
0
def load_scalers(
    path: str,
) -> Tuple[StandardScaler, StandardScaler, StandardScaler, StandardScaler]:
    """
    Loads the scalers a model was trained with.

    :param path: Path where model checkpoint is saved.
    :return: A tuple with the data :class:`~chemprop.data.scaler.StandardScaler`
             and features :class:`~chemprop.data.scaler.StandardScaler`.
    """
    state = torch.load(path, map_location=lambda storage, loc: storage)

    if state["data_scaler"] is not None:
        scaler = StandardScaler(state["data_scaler"]["means"],
                                state["data_scaler"]["stds"])
    else:
        scaler = None

    if state["features_scaler"] is not None:
        features_scaler = StandardScaler(state["features_scaler"]["means"],
                                         state["features_scaler"]["stds"],
                                         replace_nan_token=0)
    else:
        features_scaler = None

    if "atom_descriptor_scaler" in state.keys(
    ) and state["atom_descriptor_scaler"] is not None:
        atom_descriptor_scaler = StandardScaler(
            state["atom_descriptor_scaler"]["means"],
            state["atom_descriptor_scaler"]["stds"],
            replace_nan_token=0,
        )
    else:
        atom_descriptor_scaler = None

    if "bond_feature_scaler" in state.keys(
    ) and state["bond_feature_scaler"] is not None:
        bond_feature_scaler = StandardScaler(
            state["bond_feature_scaler"]["means"],
            state["bond_feature_scaler"]["stds"],
            replace_nan_token=0,
        )
    else:
        bond_feature_scaler = None

    return scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler
Example #6
0
def load_scalers(
    path: str
) -> Tuple[StandardScaler, StandardScaler, StandardScaler, StandardScaler]:
    """
    Loads the scalers a model was trained with.

    :param path: Path where model checkpoint is saved.
    :return: A tuple with the data :class:`~chemprop.data.scaler.StandardScaler`
             and features :class:`~chemprop.data.scaler.StandardScaler`.
    """
    state = torch.load(path, map_location=lambda storage, loc: storage)

    scaler = StandardScaler(
        state['data_scaler']['means'], state['data_scaler']
        ['stds']) if state['data_scaler'] is not None else None
    features_scaler = StandardScaler(
        state['features_scaler']['means'],
        state['features_scaler']['stds'],
        replace_nan_token=0) if state['features_scaler'] is not None else None

    if 'atom_descriptor_scaler' in state.keys():
        atom_descriptor_scaler = StandardScaler(
            state['atom_descriptor_scaler']['means'],
            state['atom_descriptor_scaler']['stds'],
            replace_nan_token=0
        ) if state['atom_descriptor_scaler'] is not None else None
    else:
        atom_descriptor_scaler = None

    if 'bond_feature_scaler' in state.keys():
        bond_feature_scaler = StandardScaler(
            state['bond_feature_scaler']['means'],
            state['bond_feature_scaler']['stds'],
            replace_nan_token=0
        ) if state['bond_feature_scaler'] is not None else None
    else:
        bond_feature_scaler = None

    return scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler
Example #7
0
def predict(model: nn.Module,
            data: MoleculeDataset,
            batch_size: int,
            disable_progress_bar: bool = False,
            scaler: StandardScaler = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data: A MoleculeDataset.
    :param batch_size: Batch size.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A StandardScaler object fit on the training targets.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """
    model.eval()

    preds = []

    num_iters, iter_step = len(data), batch_size

    for i in trange(0, num_iters, iter_step, disable=disable_progress_bar):
        # Prepare batch
        mol_batch = MoleculeDataset(data[i:i + batch_size])
        smiles_batch, features_batch = mol_batch.smiles(), mol_batch.features()

        # Run model
        batch = smiles_batch

        with torch.no_grad():
            batch_preds = model(batch, features_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

    return preds
Example #8
0
def predict(model: nn.Module,
            data: MoleculeDataset,
            batch_size: int,
            scaler: StandardScaler = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data: A MoleculeDataset.
    :param batch_size: Batch size.
    :param scaler: A StandardScaler object fit on the training targets.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """
    model.eval()

    preds = []

    num_iters, iter_step = len(data), batch_size
    smiles_batch_all = []

    for i in trange(0, num_iters, iter_step):
        # Prepare batch
        mol_batch = MoleculeDataset(data[i:i + batch_size])
        smiles_batch, features_batch = mol_batch.smiles(), mol_batch.features()

        # Run model
        batch = smiles_batch

        with torch.no_grad():
            batch_preds = model(batch, features_batch)

        batch_preds = [x.data.cpu().numpy() for x in batch_preds]

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        # Collect vectors
        preds.append(batch_preds)
        smiles_batch_all.extend(smiles_batch)
    preds = [np.concatenate(x) for x in zip(*preds)]

    return preds, smiles_batch_all
Example #9
0
def predict(model: MoleculeModel,
            data_loader: MoleculeDataLoader,
            disable_progress_bar: bool = False,
            scaler: StandardScaler = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param data_loader: A :class:`~chemprop.data.data.MoleculeDataLoader`.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A :class:`~chemprop.features.scaler.StandardScaler` object fit on the training targets.
    :return: A list of lists of predictions. The outer list is molecules while the inner list is tasks.
    """
    model.eval()

    preds = []

    for batch in tqdm(data_loader, disable=disable_progress_bar, leave=False):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch, target_batch, atom_descriptors_batch, atom_features_batch, bond_features_batch, smiles_batch = \
            batch.batch_graph(), batch.features(), batch.targets(), batch.atom_descriptors(), \
            batch.atom_features(), batch.bond_features(), batch.smiles_one_hot_encoding()
        # Make predictions
        with torch.no_grad():
            batch_preds = model(mol_batch, features_batch,
                                atom_descriptors_batch, atom_features_batch,
                                bond_features_batch, smiles_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

    return preds
Example #10
0
def predict(model: nn.Module,
            data_loader: MoleculeDataLoader,
            disable_progress_bar: bool = False,
            scaler: StandardScaler = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data_loader: A MoleculeDataLoader.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A StandardScaler object fit on the training targets.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """
    model.eval()

    preds = []

    for batch in tqdm(data_loader, disable=disable_progress_bar):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch = batch.batch_graph(), batch.features()

        # Make predictions
        with torch.no_grad():
            batch_preds = model(mol_batch, features_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

    return preds
Example #11
0
def run_training(args: Namespace, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set GPU
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    # Print args
# =============================================================================
#     debug(pformat(vars(args)))
# =============================================================================

# Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.2, 0.0),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        print('=' * 100)
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

        ###my_code###
        train_df = get_data_df(train_data)
        train_df.to_csv(
            '~/PycharmProjects/CMPNN-master/data/24w_train_df_seed0.csv')
        val_df = get_data_df(val_data)
        val_df.to_csv(
            '~/PycharmProjects/CMPNN-master/data/24w_val_df_seed0.csv')
        test_df = get_data_df(test_data)
        test_df.to_csv(
            '~/PycharmProjects/CMPNN-master/data/24w_test_df_seed0.csv')

        ##########

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        with open(args.data_path, 'r') as f:
            reader = csv.reader(f)
            header = next(reader)

            lines_by_smiles = {}
            indices_by_smiles = {}
            for i, line in enumerate(reader):
                smiles = line[0]
                lines_by_smiles[smiles] = line
                indices_by_smiles[smiles] = i

        all_split_indices = []
        for dataset, name in [(train_data, 'train'), (val_data, 'val'),
                              (test_data, 'test')]:
            with open(os.path.join(args.save_dir, name + '_smiles.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(['smiles'])
                for smiles in dataset.smiles():
                    writer.writerow([smiles])
            with open(os.path.join(args.save_dir, name + '_full.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(header)
                for smiles in dataset.smiles():
                    writer.writerow(lines_by_smiles[smiles])
            split_indices = []
            for smiles in dataset.smiles():
                split_indices.append(indices_by_smiles[smiles])
                split_indices = sorted(split_indices)
            all_split_indices.append(split_indices)
        with open(os.path.join(args.save_dir, 'split_indices.pckl'),
                  'wb') as f:
            pickle.dump(all_split_indices, f)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)
        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    current_args=args,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in range(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data=train_data,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data=val_data,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  batch_size=args.batch_size,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(
                        f'Validation {task_name} {args.metric} = {val_score:.6f}'
                    )
                    writer.add_scalar(f'validation_{task_name}_{args.metric}',
                                      val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                cuda=args.cuda,
                                logger=logger)

        test_preds = predict(model=model,
                             data=test_data,
                             batch_size=args.batch_size,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(
                    f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                )
                writer.add_scalar(f'test_{task_name}_{args.metric}',
                                  test_score, n_iter)

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
    writer.add_scalar(f'ensemble_test_{args.metric}', avg_ensemble_test_score,
                      0)

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    return ensemble_scores
Example #12
0
def run_training(args: Namespace, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set GPU
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    # Print args
    debug(pformat(vars(args)))

    # Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    desired_labels = get_desired_labels(args, args.task_names)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    args.real_num_tasks = args.num_tasks - args.features_size if args.predict_features else args.num_tasks
    debug(f'Number of tasks = {args.num_tasks}')

    if args.dataset_type == 'bert_pretraining':
        data.bert_init(args, logger)

    # Split data
    if args.dataset_type == 'regression_with_binning':  # Note: for now, binning based on whole dataset, not just training set
        data, bin_predictions, regression_data = data
        args.bin_predictions = bin_predictions
        debug(f'Splitting data with seed {args.seed}')
        train_data, _, _ = split_data(data=data,
                                      split_type=args.split_type,
                                      sizes=args.split_sizes,
                                      seed=args.seed,
                                      args=args,
                                      logger=logger)
        _, val_data, test_data = split_data(regression_data,
                                            split_type=args.split_type,
                                            sizes=args.split_sizes,
                                            seed=args.seed,
                                            args=args,
                                            logger=logger)
    else:
        debug(f'Splitting data with seed {args.seed}')
        if args.separate_test_set:
            test_data = get_data(path=args.separate_test_set,
                                 args=args,
                                 features_path=args.separate_test_set_features,
                                 logger=logger)
            if args.separate_val_set:
                val_data = get_data(
                    path=args.separate_val_set,
                    args=args,
                    features_path=args.separate_val_set_features,
                    logger=logger)
                train_data = data  # nothing to split; we already got our test and val sets
            else:
                train_data, val_data, _ = split_data(
                    data=data,
                    split_type=args.split_type,
                    sizes=(0.8, 0.2, 0.0),
                    seed=args.seed,
                    args=args,
                    logger=logger)
        else:
            train_data, val_data, test_data = split_data(
                data=data,
                split_type=args.split_type,
                sizes=args.split_sizes,
                seed=args.seed,
                args=args,
                logger=logger)

    # Optionally replace test data with train or val data
    if args.test_split == 'train':
        test_data = train_data
    elif args.test_split == 'val':
        test_data = val_data

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

        if args.class_balance:
            train_class_sizes = get_class_sizes(train_data)
            class_batch_counts = torch.Tensor(
                train_class_sizes) * args.batch_size
            args.class_weights = 1 / torch.Tensor(class_batch_counts)

    if args.save_smiles_splits:
        with open(args.data_path, 'r') as f:
            reader = csv.reader(f)
            header = next(reader)

            lines_by_smiles = {}
            indices_by_smiles = {}
            for i, line in enumerate(reader):
                smiles = line[0]
                lines_by_smiles[smiles] = line
                indices_by_smiles[smiles] = i

        all_split_indices = []
        for dataset, name in [(train_data, 'train'), (val_data, 'val'),
                              (test_data, 'test')]:
            with open(os.path.join(args.save_dir, name + '_smiles.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(['smiles'])
                for smiles in dataset.smiles():
                    writer.writerow([smiles])
            with open(os.path.join(args.save_dir, name + '_full.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(header)
                for smiles in dataset.smiles():
                    writer.writerow(lines_by_smiles[smiles])
            split_indices = []
            for smiles in dataset.smiles():
                split_indices.append(indices_by_smiles[smiles])
                split_indices = sorted(split_indices)
            all_split_indices.append(split_indices)
        with open(os.path.join(args.save_dir, 'split_indices.pckl'),
                  'wb') as f:
            pickle.dump(all_split_indices, f)
        return [1 for _ in range(args.num_tasks)
                ]  # short circuit out when just generating splits

    if args.features_scaling:
        features_scaler = train_data.normalize_features(
            replace_nan_token=None if args.predict_features else 0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(
        train_data
    ) if args.prespecified_chunk_dir is None else args.prespecified_chunks_max_examples_per_epoch

    if args.adversarial or args.moe:
        val_smiles, test_smiles = val_data.smiles(), test_data.smiles()

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Optionally truncate outlier values
    if args.truncate_outliers:
        print('Truncating outliers in train set')
        train_data = truncate_outliers(train_data)

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression' and args.target_scaling:
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    if args.moe:
        train_data = cluster_split(train_data,
                                   args.num_sources,
                                   args.cluster_max_ratio,
                                   seed=args.cluster_split_seed,
                                   logger=logger)

    # Chunk training data if too large to load in memory all at once
    if args.num_chunks > 1:
        os.makedirs(args.chunk_temp_dir, exist_ok=True)
        train_paths = []
        if args.moe:
            chunked_sources = [td.chunk(args.num_chunks) for td in train_data]
            chunks = []
            for i in range(args.num_chunks):
                chunks.append([source[i] for source in chunked_sources])
        else:
            chunks = train_data.chunk(args.num_chunks)
        for i in range(args.num_chunks):
            chunk_path = os.path.join(args.chunk_temp_dir, str(i) + '.txt')
            memo_path = os.path.join(args.chunk_temp_dir,
                                     'memo' + str(i) + '.txt')
            with open(chunk_path, 'wb') as f:
                pickle.dump(chunks[i], f)
            train_paths.append((chunk_path, memo_path))
        train_data = train_paths

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric, args=args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.maml:  # TODO refactor
        test_targets = []
        for task_idx in range(len(data.data[0].targets)):
            _, task_test_data, _ = test_data.sample_maml_task(args, seed=0)
            test_targets += task_test_data.targets()

    if args.dataset_type == 'bert_pretraining':
        sum_test_preds = {
            'features':
            np.zeros((len(test_smiles), args.features_size))
            if args.features_size is not None else None,
            'vocab':
            np.zeros((len(test_targets['vocab']), args.vocab.output_size))
        }
    elif args.dataset_type == 'kernel':
        sum_test_preds = np.zeros((len(test_targets), args.num_tasks))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    if args.maml:
        sum_test_preds = None  # annoying to determine exact size; will initialize later

    if args.dataset_type == 'bert_pretraining':
        # Only predict targets that are masked out
        test_targets['vocab'] = [
            target if mask == 0 else None
            for target, mask in zip(test_targets['vocab'], test_data.mask())
        ]

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        os.makedirs(save_dir, exist_ok=True)
        writer = SummaryWriter(log_dir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    current_args=args,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        if args.adjust_weight_decay:
            args.pnorm_target = compute_pnorm(model)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            if args.prespecified_chunk_dir is not None:
                # load some different random chunks each epoch
                train_data, val_data = load_prespecified_chunks(args, logger)
                debug('Loaded prespecified chunks for epoch')

            if args.dataset_type == 'unsupervised':  # won't work with moe
                full_data = MoleculeDataset(train_data.data + val_data.data)
                generate_unsupervised_cluster_labels(
                    build_model(args), full_data,
                    args)  # cluster with a new random init
                model.create_ffn(
                    args
                )  # reset the ffn since we're changing targets-- we're just pretraining the encoder.
                optimizer.param_groups.pop()  # remove ffn parameters
                optimizer.add_param_group({
                    'params': model.ffn.parameters(),
                    'lr': args.init_lr[1],
                    'weight_decay': args.weight_decay[1]
                })
                if args.cuda:
                    model.ffn.cuda()

            if args.gradual_unfreezing:
                if epoch % args.epochs_per_unfreeze == 0:
                    unfroze_layer = model.unfreeze_next(
                    )  # consider just stopping early after we have nothing left to unfreeze?
                    if unfroze_layer:
                        debug('Unfroze last frozen layer')

            n_iter = train(model=model,
                           data=train_data,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer,
                           chunk_names=(args.num_chunks > 1),
                           val_smiles=val_smiles if args.adversarial else None,
                           test_smiles=test_smiles
                           if args.adversarial or args.moe else None)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data=val_data,
                                  metric_func=metric_func,
                                  args=args,
                                  scaler=scaler,
                                  logger=logger)

            if args.dataset_type == 'bert_pretraining':
                if val_scores['features'] is not None:
                    debug(
                        f'Validation features rmse = {val_scores["features"]:.6f}'
                    )
                    writer.add_scalar('validation_features_rmse',
                                      val_scores['features'], n_iter)
                val_scores = [val_scores['vocab']]

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    if task_name in desired_labels:
                        debug(
                            f'Validation {task_name} {args.metric} = {val_score:.6f}'
                        )
                        writer.add_scalar(
                            f'validation_{task_name}_{args.metric}', val_score,
                            n_iter)

            # Save model checkpoint if improved validation score, or always save it if unsupervised
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score or \
                    args.dataset_type == 'unsupervised':
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

        if args.dataset_type == 'unsupervised':
            return [0]  # rest of this is meaningless when unsupervised

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                cuda=args.cuda,
                                logger=logger)

        if args.split_test_by_overlap_dataset is not None:
            overlap_data = get_data(path=args.split_test_by_overlap_dataset,
                                    logger=logger)
            overlap_smiles = set(overlap_data.smiles())
            test_data_intersect, test_data_nonintersect = [], []
            for d in test_data.data:
                if d.smiles in overlap_smiles:
                    test_data_intersect.append(d)
                else:
                    test_data_nonintersect.append(d)
            test_data_intersect, test_data_nonintersect = MoleculeDataset(
                test_data_intersect), MoleculeDataset(test_data_nonintersect)
            for name, td in [('Intersect', test_data_intersect),
                             ('Nonintersect', test_data_nonintersect)]:
                test_preds = predict(model=model,
                                     data=td,
                                     args=args,
                                     scaler=scaler,
                                     logger=logger)
                test_scores = evaluate_predictions(
                    preds=test_preds,
                    targets=td.targets(),
                    metric_func=metric_func,
                    dataset_type=args.dataset_type,
                    args=args,
                    logger=logger)
                avg_test_score = np.nanmean(test_scores)
                info(
                    f'Model {model_idx} test {args.metric} for {name} = {avg_test_score:.6f}'
                )

        if len(
                test_data
        ) == 0:  # just get some garbage results without crashing; in this case we didn't care anyway
            test_preds, test_scores = sum_test_preds, [
                0 for _ in range(len(args.task_names))
            ]
        else:
            test_preds = predict(model=model,
                                 data=test_data,
                                 args=args,
                                 scaler=scaler,
                                 logger=logger)
            test_scores = evaluate_predictions(preds=test_preds,
                                               targets=test_targets,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               args=args,
                                               logger=logger)

        if args.maml:
            if sum_test_preds is None:
                sum_test_preds = np.zeros(np.array(test_preds).shape)

        if args.dataset_type == 'bert_pretraining':
            if test_preds['features'] is not None:
                sum_test_preds['features'] += np.array(test_preds['features'])
            sum_test_preds['vocab'] += np.array(test_preds['vocab'])
        else:
            sum_test_preds += np.array(test_preds)

        if args.dataset_type == 'bert_pretraining':
            if test_preds['features'] is not None:
                debug(
                    f'Model {model_idx} test features rmse = {test_scores["features"]:.6f}'
                )
                writer.add_scalar('test_features_rmse',
                                  test_scores['features'], 0)
            test_scores = [test_scores['vocab']]

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                if task_name in desired_labels:
                    info(
                        f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                    )
                    writer.add_scalar(f'test_{task_name}_{args.metric}',
                                      test_score, n_iter)

    # Evaluate ensemble on test set
    if args.dataset_type == 'bert_pretraining':
        avg_test_preds = {
            'features':
            (sum_test_preds['features'] / args.ensemble_size).tolist()
            if sum_test_preds['features'] is not None else None,
            'vocab': (sum_test_preds['vocab'] / args.ensemble_size).tolist()
        }
    else:
        avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    if len(test_data
           ) == 0:  # just return some garbage when we didn't want test data
        ensemble_scores = test_scores
    else:
        ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                               targets=test_targets,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               args=args,
                                               logger=logger)

    # Average ensemble score
    if args.dataset_type == 'bert_pretraining':
        if ensemble_scores['features'] is not None:
            info(
                f'Ensemble test features rmse = {ensemble_scores["features"]:.6f}'
            )
            writer.add_scalar('ensemble_test_features_rmse',
                              ensemble_scores['features'], 0)
        ensemble_scores = [ensemble_scores['vocab']]

    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
    writer.add_scalar(f'ensemble_test_{args.metric}', avg_ensemble_test_score,
                      0)

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    return ensemble_scores
Example #13
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              num_folds=args.num_folds,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             num_folds=args.num_folds,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            num_folds=args.num_folds,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(train_data=train_data,
                           val_data=val_data,
                           test_data=test_data,
                           data_path=args.data_path,
                           save_dir=args.save_dir,
                           smiles_column=args.smiles_column)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    if args.class_balance:
        debug(
            f'With class_balance, effective train size = {train_data_loader.iter_size:,}'
        )

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metrics=args.metrics,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            for metric in args.metrics:
                # Average validation score
                avg_val_score = np.nanmean(val_scores[metric])
                debug(f'Validation {metric} = {avg_val_score:.6f}')
                writer.add_scalar(f'validation_{metric}', avg_val_score,
                                  n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names,
                                                    val_scores[metric]):
                        debug(
                            f'Validation {task_name} {metric} = {val_score:.6f}'
                        )
                        writer.add_scalar(f'validation_{task_name}_{metric}',
                                          val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), model,
                                scaler, features_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric in args.metrics:
            avg_test_score = np.nanmean(test_scores[metric])
            info(f'Model {model_idx} test {metric} = {avg_test_score:.6f}')
            writer.add_scalar(f'test_{metric}', avg_test_score, 0)

            if args.show_individual_scores:
                # Individual test scores
                for task_name, test_score in zip(args.task_names,
                                                 test_scores[metric]):
                    info(
                        f'Model {model_idx} test {task_name} {metric} = {test_score:.6f}'
                    )
                    writer.add_scalar(f'test_{task_name}_{metric}', test_score,
                                      n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    for metric in args.metrics:
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(ensemble_scores[metric])
        info(f'Ensemble test {metric} = {avg_ensemble_test_score:.6f}')

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names,
                                                 ensemble_scores[metric]):
                info(
                    f'Ensemble test {task_name} {metric} = {ensemble_score:.6f}'
                )

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(
            data={'smiles': test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [
                pred[i] for pred in avg_test_preds
            ]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir,
                                                 'test_preds.csv'),
                                    index=False)

    return ensemble_scores
Example #14
0
def predict(
    model: MoleculeModel,
    data_loader: MoleculeDataLoader,
    disable_progress_bar: bool = False,
    scaler: StandardScaler = None,
    return_unc_parameters: bool = False,
    dropout_prob: float = 0.0,
) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param data_loader: A :class:`~chemprop.data.data.MoleculeDataLoader`.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A :class:`~chemprop.features.scaler.StandardScaler` object fit on the training targets.
    :param return_unc_parameters: A bool indicating whether additional uncertainty parameters would be returned alongside the mean predictions.
    :param dropout_prob: For use during uncertainty prediction only. The propout probability used in generating a dropout ensemble.
    :return: A list of lists of predictions. The outer list is molecules while the inner list is tasks. If returning uncertainty parameters as well,
        it is a tuple of lists of lists, of a length depending on how many uncertainty parameters are appropriate for the loss function.
    """
    model.eval()

    # Activate dropout layers to work during inference for uncertainty estimation
    if dropout_prob > 0.0:

        def activate_dropout_(model):
            return activate_dropout(model, dropout_prob)

        model.apply(activate_dropout_)

    preds = []

    var, lambdas, alphas, betas = [], [], [], [
    ]  # only used if returning uncertainty parameters

    for batch in tqdm(data_loader, disable=disable_progress_bar, leave=False):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch = batch.batch_graph()
        features_batch = batch.features()
        atom_descriptors_batch = batch.atom_descriptors()
        atom_features_batch = batch.atom_features()
        bond_features_batch = batch.bond_features()

        # Make predictions
        with torch.no_grad():
            batch_preds = model(
                mol_batch,
                features_batch,
                atom_descriptors_batch,
                atom_features_batch,
                bond_features_batch,
            )

        batch_preds = batch_preds.data.cpu().numpy()

        if model.loss_function == "mve":
            batch_preds, batch_var = np.split(batch_preds, 2, axis=1)
        elif model.loss_function == "dirichlet":
            if model.classification:
                batch_alphas = np.reshape(
                    batch_preds,
                    [batch_preds.shape[0], batch_preds.shape[1] // 2, 2])
                batch_preds = batch_alphas[:, :, 1] / np.sum(
                    batch_alphas, axis=2)  # shape(data, tasks, 2)
            elif model.multiclass:
                batch_alphas = batch_preds
                batch_preds = batch_preds / np.sum(
                    batch_alphas, axis=2,
                    keepdims=True)  # shape(data, tasks, num_classes)
        elif model.loss_function == 'evidential':  # regression
            batch_preds, batch_lambdas, batch_alphas, batch_betas = np.split(
                batch_preds, 4, axis=1)

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)
            if model.loss_function == "mve":
                batch_var = batch_var * scaler.stds**2
            elif model.loss_function == "evidential":
                batch_betas = batch_betas * scaler.stds**2

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)
        if model.loss_function == "mve":
            var.extend(batch_var.tolist())
        elif model.loss_function == "dirichlet" and model.classification:
            alphas.extend(batch_alphas.tolist())
        elif model.loss_function == "evidential":  # regression
            lambdas.extend(batch_lambdas.tolist())
            alphas.extend(batch_alphas.tolist())
            betas.extend(batch_betas.tolist())

    if return_unc_parameters:
        if model.loss_function == "mve":
            return preds, var
        elif model.loss_function == "dirichlet":
            return preds, alphas
        elif model.loss_function == "evidential":
            return preds, lambdas, alphas, betas

    return preds
Example #15
0
def predict(model: nn.Module,
            data: MoleculeDataset,
            args: Namespace,
            scaler: StandardScaler = None,
            bert_save_memory: bool = False,
            logger: logging.Logger = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data: A MoleculeDataset.
    :param args: Arguments.
    :param scaler: A StandardScaler object fit on the training targets.
    :param bert_save_memory: Store unused predictions as None to avoid unnecessary memory use.
    :param logger: Logger.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """
    model.eval()

    preds = []
    if args.dataset_type == 'bert_pretraining':
        features_preds = []

    if args.maml:
        num_iters, iter_step = data.num_tasks() * args.maml_batches_per_epoch, 1
        full_targets = []
    else:
        num_iters, iter_step = len(data), args.batch_size
    
    if args.parallel_featurization:
        batch_queue = Queue(args.batch_queue_max_size)
        exit_queue = Queue(1)
        batch_process = Process(target=async_mol2graph, args=(batch_queue, data, args, num_iters, iter_step, exit_queue, True))
        batch_process.start()
        currently_loaded_batches = []

    for i in trange(0, num_iters, iter_step):
        if args.maml:
            task_train_data, task_test_data, task_idx = data.sample_maml_task(args, seed=0)
            mol_batch = task_test_data
            smiles_batch, features_batch, targets_batch = task_train_data.smiles(), task_train_data.features(), task_train_data.targets(task_idx)
            targets = torch.Tensor(targets_batch).unsqueeze(1)
            if args.cuda:
                targets = targets.cuda()
        else:
            # Prepare batch
            if args.parallel_featurization:
                if len(currently_loaded_batches) == 0:
                    currently_loaded_batches = batch_queue.get()
                mol_batch, featurized_mol_batch = currently_loaded_batches.pop(0)
            else:
                mol_batch = MoleculeDataset(data[i:i + args.batch_size])
            smiles_batch, features_batch = mol_batch.smiles(), mol_batch.features()

        # Run model
        if args.dataset_type == 'bert_pretraining':
            batch = mol2graph(smiles_batch, args)
            batch.bert_mask(mol_batch.mask())
        else:
            batch = smiles_batch
        
        if args.maml:  # TODO refactor with train loop
            model.zero_grad()
            intermediate_preds = model(batch, features_batch)
            loss = get_loss_func(args)(intermediate_preds, targets)
            loss = loss.sum() / len(batch)
            grad = torch.autograd.grad(loss, [p for p in model.parameters() if p.requires_grad])
            theta = [p for p in model.named_parameters() if p[1].requires_grad]  # comes in same order as grad
            theta_prime = {p[0]: p[1] - args.maml_lr * grad[i] for i, p in enumerate(theta)}
            for name, nongrad_param in [p for p in model.named_parameters() if not p[1].requires_grad]:
                theta_prime[name] = nongrad_param + torch.zeros(nongrad_param.size()).to(nongrad_param)
            model_prime = build_model(args=args, params=theta_prime)
            smiles_batch, features_batch, targets_batch = task_test_data.smiles(), task_test_data.features(), task_test_data.targets(task_idx)
            # no mask since we only picked data points that have the desired target
            with torch.no_grad():
                batch_preds = model_prime(smiles_batch, features_batch)
            full_targets.extend([[t] for t in targets_batch])
        else:
            with torch.no_grad():
                if args.parallel_featurization:
                    previous_graph_input_mode = model.encoder.graph_input
                    model.encoder.graph_input = True  # force model to accept already processed input
                    batch_preds = model(featurized_mol_batch, features_batch)
                    model.encoder.graph_input = previous_graph_input_mode
                else:
                    batch_preds = model(batch, features_batch)

                if args.dataset_type == 'bert_pretraining':
                    if batch_preds['features'] is not None:
                        features_preds.extend(batch_preds['features'].data.cpu().numpy())
                    batch_preds = batch_preds['vocab']
                
                if args.dataset_type == 'kernel':
                    batch_preds = batch_preds.view(int(batch_preds.size(0)/2), 2, batch_preds.size(1))
                    batch_preds = model.kernel_output_layer(batch_preds)

        batch_preds = batch_preds.data.cpu().numpy()

        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)
        
        if args.dataset_type == 'regression_with_binning':
            batch_preds = batch_preds.reshape((batch_preds.shape[0], args.num_tasks, args.num_bins))
            indices = np.argmax(batch_preds, axis=2)
            preds.extend(indices.tolist())
        else:
            batch_preds = batch_preds.tolist()
            if args.dataset_type == 'bert_pretraining' and bert_save_memory:
                for atom_idx, mask_val in enumerate(mol_batch.mask()):
                    if mask_val != 0:
                        batch_preds[atom_idx] = None  # not going to predict, so save some memory when passing around
            preds.extend(batch_preds)
    
    if args.dataset_type == 'regression_with_binning':
        preds = args.bin_predictions[np.array(preds)].tolist()

    if args.dataset_type == 'bert_pretraining':
        preds = {
            'features': features_preds if len(features_preds) > 0 else None,
            'vocab': preds
        }

    if args.parallel_featurization:
        exit_queue.put(0)  # dummy var to get the subprocess to know that we're done
        batch_process.join()

    if args.maml:
        # return the task targets here to guarantee alignment;
        # there's probably no reasonable scenario where we'd use MAML directly to predict something that's actually unknown
        return preds, full_targets

    return preds
    def generate_scalers(self):
        print("Creating new molecule, atom, and bond scalers for dataset.")

        # Get all data features for normalization.
        all_molecule_features = []
        all_atom_features = []
        all_bond_features = []
        for d in self.dataset:
            all_molecule_features.append(d.features)
            all_atom_features += d.x
            all_bond_features += d.edge_attr

        # Generate and save molecule feature scaler for data.
        molecule_scaler = StandardScaler(replace_nan_token=0)
        molecule_scaler.fit(vstack(all_molecule_features))
        self.molecule_scaler = molecule_scaler
        with open(self.scalers_file_paths["molecule"], "wb") as f:
            pickle.dump(molecule_scaler, f, pickle.HIGHEST_PROTOCOL)

        # Generate and save atom feature scaler for data.
        atom_scaler = StandardScaler(replace_nan_token=0)
        atom_scaler.fit(vstack(all_atom_features))
        self.atom_scaler = atom_scaler
        with open(self.scalers_file_paths["atom"], "wb") as f:
            pickle.dump(atom_scaler, f, pickle.HIGHEST_PROTOCOL)

        # Generate and save bond feature scaler for data.
        bond_scaler = StandardScaler(replace_nan_token=0)
        bond_scaler.fit(vstack(all_bond_features))
        self.bond_scaler = bond_scaler
        with open(self.scalers_file_paths["bond"], "wb") as f:
            pickle.dump(bond_scaler, f, pickle.HIGHEST_PROTOCOL)
def pdts(args: TrainArgs, model_idx):
    """
    preliminary experiment with PDTS (approximate BO)
    we use a data set size of 50k and run until we have trained with 15k data points
    our batch size is 50
    we initialise with 1000 data points
    """

    ######## set up all logging ########
    logger = None

    # make save_dir
    save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
    makedirs(save_dir)

    # make results_dir
    results_dir = args.results_dir
    makedirs(results_dir)

    # initialise wandb
    #os.environ['WANDB_MODE'] = 'dryrun'
    wandb.init(name=args.wandb_name + '_' + str(model_idx),
               project=args.wandb_proj,
               reinit=True)
    #print('WANDB directory is:')
    #print(wandb.run.dir)
    ####################################

    ########## get data
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()

    ########## SMILES of top 1%
    top1p = np.array(MoleculeDataset(data).targets())
    top1p_idx = np.argsort(-top1p[:, 0])[:int(args.max_data_size * 0.01)]
    SMILES = np.array(MoleculeDataset(data).smiles())[top1p_idx]

    ########## initial data splits
    args.seed = args.data_seeds[model_idx]
    data.shuffle(seed=args.seed)
    sizes = args.split_sizes
    train_size = int(sizes[0] * len(data))
    train_orig = data[:train_size]
    test_orig = data[train_size:]
    train_data, test_data = copy.deepcopy(
        MoleculeDataset(train_orig)), copy.deepcopy(MoleculeDataset(test_orig))
    args.train_data_size = len(train_data)

    ########## standardising
    # features (train and test)
    features_scaler = train_data.normalize_features(replace_nan_token=0)
    test_data.normalize_features(features_scaler)
    # targets (train)
    train_targets = train_data.targets()
    test_targets = test_data.targets()
    scaler = StandardScaler().fit(train_targets)
    scaled_targets = scaler.transform(train_targets).tolist()
    train_data.set_targets(scaled_targets)

    ########## loss, metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    ########## data loaders
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ########## instantiating model, optimiser, scheduler (MAP)
    # set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seeds[model_idx])
    # build model
    print(f'Building model {model_idx}')
    model = MoleculeModel(args)
    print(model)
    print(f'Number of parameters = {param_count(model):,}')
    if args.cuda:
        print('Moving model to cuda')
    model = model.to(args.device)
    # optimizer
    optimizer = Adam([{
        'params': model.encoder.parameters()
    }, {
        'params': model.ffn.parameters()
    }, {
        'params': model.log_noise,
        'weight_decay': 0
    }],
                     lr=args.lr,
                     weight_decay=args.weight_decay)
    # learning rate scheduler
    scheduler = scheduler_const([args.lr])

    ####################################################################
    ####################################################################
    # FIRST THOMPSON ITERATION

    ### scores array
    ptds_scores = np.ones(args.pdts_batches + 1)
    batch_no = 0

    ### fill for batch 0
    SMILES_train = np.array(train_data.smiles())
    SMILES_stack = np.hstack((SMILES, SMILES_train))
    overlap = len(SMILES_stack) - len(np.unique(SMILES_stack))
    prop = overlap / len(SMILES)
    ptds_scores[batch_no] = prop
    wandb.log({
        "Proportion of top 1%": prop,
        "batch_no": batch_no
    },
              commit=False)

    ### train MAP posterior
    gp_switch = False
    likelihood = None
    bbp_switch = None
    n_iter = 0
    for epoch in range(args.epochs_init_map):
        n_iter = train(model=model,
                       data_loader=train_data_loader,
                       loss_func=loss_func,
                       optimizer=optimizer,
                       scheduler=scheduler,
                       args=args,
                       n_iter=n_iter,
                       bbp_switch=bbp_switch)
        # save to save_dir
        #if epoch == args.epochs_init_map - 1:
        #save_checkpoint(os.path.join(save_dir, f'model_{batch_no}.pt'), model, scaler, features_scaler, args)
    # if X load from checkpoint path
    if args.bbp or args.gp or args.swag or args.sgld:
        model = load_checkpoint(args.checkpoint_path +
                                f'/model_{model_idx}/model_{batch_no}.pt',
                                device=args.device,
                                logger=None)

    ########## BBP
    if args.bbp:
        model_bbp = MoleculeModelBBP(
            args)  # instantiate with bayesian linear layers
        for (_, param_bbp), (_, param_pre) in zip(model_bbp.named_parameters(),
                                                  model.named_parameters()):
            param_bbp.data = copy.deepcopy(
                param_pre.data.T)  # copy over parameters
        # instantiate rhos
        for layer in model_bbp.children():
            if isinstance(layer, BayesLinear):
                layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
        for layer in model_bbp.encoder.encoder.children():
            if isinstance(layer, BayesLinear):
                layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
        model = model_bbp  # name back
        # move to cuda
        if args.cuda:
            print('Moving bbp model to cuda')
            model = model.to(args.device)
        # optimiser and scheduler
        optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
        scheduler = scheduler_const([args.lr])

        bbp_switch = 2
        n_iter = 0
        for epoch in range(args.epochs_init):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           bbp_switch=bbp_switch)

    ########## GP
    if args.gp:
        # feature_extractor
        model.featurizer = True
        feature_extractor = model
        # inducing points
        inducing_points = initial_inducing_points(train_data_loader,
                                                  feature_extractor, args)
        # GP layer
        gp_layer = GPLayer(inducing_points, args.num_tasks)
        # full DKL model
        model = copy.deepcopy(DKLMoleculeModel(feature_extractor, gp_layer))
        # likelihood (rank 0 restricts to diagonal matrix)
        likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(
            num_tasks=12, rank=0)
        # model and likelihood to CUDA
        if args.cuda:
            model.cuda()
            likelihood.cuda()
        # loss object
        loss_func = gpytorch.mlls.VariationalELBO(
            likelihood, model.gp_layer, num_data=args.train_data_size)
        # optimiser and scheduler
        params_list = [
            {
                'params': model.feature_extractor.parameters(),
                'weight_decay': args.weight_decay_gp
            },
            {
                'params': model.gp_layer.hyperparameters()
            },
            {
                'params': model.gp_layer.variational_parameters()
            },
            {
                'params': likelihood.parameters()
            },
        ]
        optimizer = torch.optim.Adam(params_list, lr=args.lr)
        scheduler = scheduler_const([args.lr])

        gp_switch = True
        n_iter = 0
        for epoch in range(args.epochs_init):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           gp_switch=gp_switch,
                           likelihood=likelihood)

    ########## SWAG
    if args.swag:
        model_core = copy.deepcopy(model)
        model = train_swag_pdts(model_core, train_data_loader, loss_func,
                                scaler, features_scaler, args, save_dir,
                                batch_no)

    ########## SGLD
    if args.sgld:
        model = train_sgld_pdts(model, train_data_loader, loss_func, scaler,
                                features_scaler, args, save_dir, batch_no)

    ### find top_idx
    top_idx = []  # need for thom
    sum_test_preds = np.zeros(
        (len(test_orig), args.num_tasks))  # need for greedy
    for sample in range(args.samples):

        # draw model from SWAG posterior
        if args.swag:
            model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

        # retrieve sgld sample
        if args.sgld:
            model = load_checkpoint(
                args.save_dir +
                f'/model_{model_idx}/model_{batch_no}/model_{sample}.pt',
                device=args.device,
                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             args=args,
                             scaler=scaler,
                             test_data=True,
                             gp_sample=args.thompson,
                             bbp_sample=True)
        test_preds = np.array(test_preds)
        # thompson bit
        rank = 0

        # base length
        if args.sgld:
            base_length = 5 * sample + 4
        else:
            base_length = sample

        while args.thompson and (len(top_idx) <= base_length):
            top_unique_molecule = np.argsort(-test_preds[:, 0])[rank]
            rank += 1
            if top_unique_molecule not in top_idx:
                top_idx.append(top_unique_molecule)
        # add to sum_test_preds
        sum_test_preds += test_preds
        # print
        print('done sample ' + str(sample))
    # final top_idx
    if args.thompson:
        top_idx = np.array(top_idx)
    else:
        sum_test_preds /= args.samples
        top_idx = np.argsort(-sum_test_preds[:, 0])[:50]

    ### transfer from test to train
    top_idx = -np.sort(-top_idx)
    for idx in top_idx:
        train_orig.append(test_orig.pop(idx))
    train_data, test_data = copy.deepcopy(
        MoleculeDataset(train_orig)), copy.deepcopy(MoleculeDataset(test_orig))
    args.train_data_size = len(train_data)
    if args.gp:
        loss_func = gpytorch.mlls.VariationalELBO(
            likelihood, model.gp_layer, num_data=args.train_data_size)
    print(args.train_data_size)

    ### standardise features (train and test; using original features_scaler)
    train_data.normalize_features(features_scaler)
    test_data.normalize_features(features_scaler)

    ### standardise targets (train only; using original scaler)
    train_targets = train_data.targets()
    scaled_targets_tr = scaler.transform(train_targets).tolist()
    train_data.set_targets(scaled_targets_tr)

    ### create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ####################################################################
    ####################################################################

    ##################################
    ########## thompson sampling loop
    ##################################

    for batch_no in range(1, args.pdts_batches + 1):

        ### fill in ptds_scores
        SMILES_train = np.array(train_data.smiles())
        SMILES_stack = np.hstack((SMILES, SMILES_train))
        overlap = len(SMILES_stack) - len(np.unique(SMILES_stack))
        prop = overlap / len(SMILES)
        ptds_scores[batch_no] = prop
        wandb.log({
            "Proportion of top 1%": prop,
            "batch_no": batch_no
        },
                  commit=False)

        ### train posterior
        n_iter = 0
        for epoch in range(args.epochs):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           gp_switch=gp_switch,
                           likelihood=likelihood,
                           bbp_switch=bbp_switch)
            # save to save_dir
            #if epoch == args.epochs - 1:
            #save_checkpoint(os.path.join(save_dir, f'model_{batch_no}.pt'), model, scaler, features_scaler, args)
        # if swag, load checkpoint
        if args.swag:
            model_core = load_checkpoint(
                args.checkpoint_path +
                f'/model_{model_idx}/model_{batch_no}.pt',
                device=args.device,
                logger=None)

        ########## SWAG
        if args.swag:
            model = train_swag_pdts(model_core, train_data_loader, loss_func,
                                    scaler, features_scaler, args, save_dir,
                                    batch_no)

        ########## SGLD
        if args.sgld:
            model = train_sgld_pdts(model, train_data_loader, loss_func,
                                    scaler, features_scaler, args, save_dir,
                                    batch_no)

        ### find top_idx
        top_idx = []  # need for thom
        sum_test_preds = np.zeros(
            (len(test_orig), args.num_tasks))  # need for greedy
        for sample in range(args.samples):

            # draw model from SWAG posterior
            if args.swag:
                model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

            # retrieve sgld sample
            if args.sgld:
                model = load_checkpoint(
                    args.save_dir +
                    f'/model_{model_idx}/model_{batch_no}/model_{sample}.pt',
                    device=args.device,
                    logger=logger)

            test_preds = predict(model=model,
                                 data_loader=test_data_loader,
                                 args=args,
                                 scaler=scaler,
                                 test_data=True,
                                 gp_sample=args.thompson,
                                 bbp_sample=True)
            test_preds = np.array(test_preds)
            # thompson bit
            rank = 0

            # base length
            if args.sgld:
                base_length = 5 * sample + 4
            else:
                base_length = sample

            while args.thompson and (len(top_idx) <= base_length):
                top_unique_molecule = np.argsort(-test_preds[:, 0])[rank]
                rank += 1
                if top_unique_molecule not in top_idx:
                    top_idx.append(top_unique_molecule)
            # add to sum_test_preds
            sum_test_preds += test_preds
            # print
            print('done sample ' + str(sample))
        # final top_idx
        if args.thompson:
            top_idx = np.array(top_idx)
        else:
            sum_test_preds /= args.samples
            top_idx = np.argsort(-sum_test_preds[:, 0])[:50]

        ### transfer from test to train
        top_idx = -np.sort(-top_idx)
        for idx in top_idx:
            train_orig.append(test_orig.pop(idx))
        train_data, test_data = copy.deepcopy(
            MoleculeDataset(train_orig)), copy.deepcopy(
                MoleculeDataset(test_orig))
        args.train_data_size = len(train_data)
        if args.gp:
            loss_func = gpytorch.mlls.VariationalELBO(
                likelihood, model.gp_layer, num_data=args.train_data_size)
        print(args.train_data_size)

        ### standardise features (train and test; using original features_scaler)
        train_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)

        ### standardise targets (train only; using original scaler)
        train_targets = train_data.targets()
        scaled_targets_tr = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets_tr)

        ### create data loaders
        train_data_loader = MoleculeDataLoader(
            dataset=train_data,
            batch_size=args.batch_size,
            num_workers=num_workers,
            cache=cache,
            class_balance=args.class_balance,
            shuffle=True,
            seed=args.seed)
        test_data_loader = MoleculeDataLoader(dataset=test_data,
                                              batch_size=args.batch_size,
                                              num_workers=num_workers,
                                              cache=cache)

    # save scores
    np.savez(os.path.join(results_dir, f'ptds_{model_idx}'), ptds_scores)
def save_test_data(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Print command line and args
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')
    debug('Args')
    debug(args)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # save down test targets
    np.savez('/home/willlamb/results/test_targets', np.array(test_targets))

    return None
Example #19
0
def run_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Print command line and args
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # Set pytorch seed for random initial weights
        torch.manual_seed(args.pytorch_seeds[model_idx])

        ######## set up all logging ########
        # make save_dir
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # initialise wandb
        os.environ['WANDB_MODE'] = 'dryrun'
        wandb.init(name=args.wandb_name + '_' + str(model_idx),
                   project=args.wandb_proj,
                   reinit=True)
        print('WANDB directory is:')
        print(wandb.run.dir)
        ####################################

        # Load/build model
        if args.checkpoint_path is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_path}')
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizer
        optimizer = Adam([{
            'params': model.encoder.parameters()
        }, {
            'params': model.ffn.parameters()
        }, {
            'params': model.log_noise,
            'weight_decay': 0
        }],
                         lr=args.init_lr,
                         weight_decay=args.weight_decay)

        # Learning rate scheduler
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in range(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger)
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  args=args,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            wandb.log({"Validation MAE": avg_val_score})

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

            if epoch == args.noam_epochs - 1:
                optimizer = Adam([{
                    'params': model.encoder.parameters()
                }, {
                    'params': model.ffn.parameters()
                }, {
                    'params': model.log_noise,
                    'weight_decay': 0
                }],
                                 lr=args.final_lr,
                                 weight_decay=args.weight_decay)

                scheduler = scheduler_const([args.final_lr])

        # load model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        # SWAG training loop, returns swag_model
        if args.swag:
            model = train_swag(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # SGLD loop, which saves nets
        if args.sgld:
            model = train_sgld(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # GP loop
        if args.gp:
            model, likelihood = train_gp(model, train_data, val_data,
                                         num_workers, cache, metric_func,
                                         scaler, features_scaler, args,
                                         save_dir)

        # BBP
        if args.bbp:
            model = train_bbp(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        # DUN
        if args.dun:
            model = train_dun(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # draw model from SWAG posterior
            if args.swag:
                model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

            # draw model from collected SGLD models
            if args.sgld:
                model = load_checkpoint(os.path.join(save_dir,
                                                     f'model_{sample_idx}.pt'),
                                        device=args.device,
                                        logger=logger)

            # make predictions
            test_preds = predict(model=model,
                                 data_loader=test_data_loader,
                                 args=args,
                                 scaler=scaler,
                                 test_data=True,
                                 bbp_sample=True)

            #######################################################################
            #######################################################################
            #####        SAVING STUFF DOWN

            if args.gp:

                # get test_preds_std (scaled back to original data)
                test_preds_std = predict_std_gp(model=model,
                                                data_loader=test_data_loader,
                                                args=args,
                                                scaler=scaler,
                                                likelihood=likelihood)

                # 1 - MEANS
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))

                # 2 - STD, combined aleatoric and epistemic (we save down the stds, always)
                np.savez(os.path.join(results_dir, f'predsSTDEV_{sample_idx}'),
                         np.array(test_preds_std))

            else:

                # save test_preds and aleatoric uncertainties
                if args.dun:
                    log_cat = model.log_cat.detach().cpu().numpy()
                    cat = np.exp(log_cat) / np.sum(np.exp(log_cat))
                    np.savez(os.path.join(results_dir, f'cat_{sample_idx}'),
                             cat)

                    # samples from categorical dist and saves a depth MC sample
                    depth_sample = np.random.multinomial(1,
                                                         cat).nonzero()[0][0]
                    test_preds_MCdepth = predict_MCdepth(
                        model=model,
                        data_loader=test_data_loader,
                        args=args,
                        scaler=scaler,
                        d=depth_sample)
                    np.savez(
                        os.path.join(results_dir,
                                     f'predsMCDEPTH_{sample_idx}'),
                        np.array(test_preds_MCdepth))

                if args.swag:
                    log_noise = model.base.log_noise
                else:
                    log_noise = model.log_noise
                noise = np.exp(log_noise.detach().cpu().numpy()) * np.array(
                    scaler.stds)
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))
                np.savez(os.path.join(results_dir, f'noise_{sample_idx}'),
                         noise)

            #######################################################################
            #######################################################################

            # add predictions to sum_test_preds
            if len(test_preds) != 0:
                sum_test_preds += np.array(test_preds)

            # evaluate predictions using metric function
            test_scores = evaluate_predictions(preds=test_preds,
                                               targets=test_targets,
                                               num_tasks=args.num_tasks,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               logger=logger)

            # compute average test score
            avg_test_score = np.nanmean(test_scores)
            info(
                f'Model {model_idx}, sample {sample_idx} test {args.metric} = {avg_test_score:.6f}'
            )

    #################################
    ########## Bayesian Model Average
    #################################
    # note: this is an average over Bayesian samples AND components in an ensemble

    # compute number of prediction iterations
    pred_iterations = args.ensemble_size * args.samples

    # average predictions across iterations
    avg_test_preds = (sum_test_preds / pred_iterations).tolist()

    # evaluate
    BMA_scores = evaluate_predictions(preds=avg_test_preds,
                                      targets=test_targets,
                                      num_tasks=args.num_tasks,
                                      metric_func=metric_func,
                                      dataset_type=args.dataset_type,
                                      logger=logger)

    # average scores across tasks
    avg_BMA_test_score = np.nanmean(BMA_scores)
    info(f'BMA test {args.metric} = {avg_BMA_test_score:.6f}')

    return BMA_scores
Example #20
0
def new_noise(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Get data
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # load the model
        if (args.method == 'map') or (args.method == 'swag') or (args.method
                                                                 == 'sgld'):
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'gp':
            args.num_inducing_points = 1200
            fake_model = MoleculeModel(args)
            fake_model.featurizer = True
            feature_extractor = fake_model
            inducing_points = initial_inducing_points(train_data_loader,
                                                      feature_extractor, args)
            gp_layer = GPLayer(inducing_points, args.num_tasks)
            model = load_checkpoint(
                args.checkpoint_path + f'/model_{model_idx}/DKN_model.pt',
                device=args.device,
                logger=None,
                template=DKLMoleculeModel(MoleculeModel(args, featurizer=True),
                                          gp_layer))

        if args.method == 'dropR' or args.method == 'dropA':
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'bbp':
            template = MoleculeModelBBP(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_bbp.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        if args.method == 'dun':
            args.prior_sig_dun = 0.05
            args.depth_min = 1
            args.depth_max = 5
            args.rho_min_dun = -5.5
            args.rho_max_dun = -5
            args.log_cat_init = 0
            template = MoleculeModelDUN(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            template.create_log_cat(args)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_dun.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # train_preds, train_targets
        train_preds = predict(model=model,
                              data_loader=train_data_loader,
                              args=args,
                              scaler=scaler,
                              test_data=False,
                              bbp_sample=False)
        train_preds = np.array(train_preds)
        train_targets = np.array(train_targets)

        # compute tstats
        tstats = np.ones((12, 3))
        for task in range(12):
            resid = train_preds[:, task] - train_targets[:, task]
            tstats[task] = np.array(stats.t.fit(resid, floc=0.0))

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # save down
            np.savez(os.path.join(results_dir, f'tstats_{sample_idx}'), tstats)

            print('done one')
def predict(model: nn.Module,
            data: MoleculeDataset,
            batch_size: int,
            scaler: StandardScaler = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data: A MoleculeDataset.
    :param batch_size: Batch size.
    :param scaler: A StandardScaler object fit on the training targets.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """
    model.eval()

    preds = []
    check_fp = []  # wei, for batch problem
    check_fp_d0 = []  # wei, for batch problem
    check_fp_d1 = []  # wei, for batch problem
    check_fp_d2 = []  # wei, for batch problem
    check_fp_final = []  # wei, for batch problem
    check_fp_mol = []  # wei, for batch problem

    num_iters, iter_step = len(data), batch_size

    for i in trange(0, num_iters, iter_step):
        # Prepare batch
        mol_batch = MoleculeDataset(data[i:i + batch_size])
        smiles_batch, features_batch = mol_batch.smiles(), mol_batch.features()

        # Run model
        batch = smiles_batch

        with torch.no_grad():
            batch_preds = model(batch, features_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

        # wei, for batch problem
        each_fp = model.output_fp.tolist()
        #print('each_fp:', each_fp)
        remain = num_iters % batch_size
        if len(each_fp) / 5 == remain:  # wei, /5 for d0, d1, d2, final, mol
            check_fp_d0.extend(each_fp[:remain])
            check_fp_d1.extend(each_fp[remain:remain * 2])
            check_fp_d2.extend(each_fp[remain * 2:remain * 3])
            check_fp_final.extend(each_fp[remain * 3:remain * 4])
            check_fp_mol.extend(each_fp[remain * 4:remain * 5])
        else:
            check_fp_d0.extend(each_fp[:batch_size])
            check_fp_d1.extend(each_fp[batch_size:batch_size * 2])
            check_fp_d2.extend(each_fp[batch_size * 2:batch_size * 3])
            check_fp_final.extend(each_fp[batch_size * 3:batch_size * 4])
            check_fp_mol.extend(each_fp[batch_size * 4:batch_size * 5])
    check_fp.append(check_fp_d0)
    check_fp.append(check_fp_d1)
    check_fp.append(check_fp_d2)
    check_fp.append(check_fp_final)
    check_fp.append(check_fp_mol)

    return preds, check_fp
Example #22
0
def predict(model: nn.Module,
            data: MoleculeDataset,
            batch_size: int,
            sampling_size: int,
            scaler: StandardScaler = None):
    # -> Tuple[Union[List[List[float]], None], ...]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data: A MoleculeDataset.
    :param batch_size: Batch size.
    :param sampling_size: Sampling size for MC-Dropout.
    :param scaler: A StandardScaler object fit on the training targets.
    :return: A 3-length tuple for predictions, aleatoric uncertainties and epistemic uncertainties.
    Each element is a list of lists. The outer list is examples while the inner list is tasks.
    The second and/or the third element of the tuple can be None if not computed.
    """
    model.eval()

    preds = []
    ale_unc = []
    epi_unc = []
    features = []

    num_iters, iter_step = len(data), batch_size

    # if aleatoric uncertainty is enabled
    aleatoric = model.aleatoric

    # if MC-Dropout
    mc_dropout = model.mc_dropout

    for i in trange(0, num_iters, iter_step):
        # Prepare batch
        mol_batch = MoleculeDataset(data[i:i + batch_size])
        smiles_batch, features_batch = mol_batch.smiles(), mol_batch.features()

        # Run model
        batch = smiles_batch

        if not aleatoric and not mc_dropout:
            with torch.no_grad():
                batch_preds = model(batch, features_batch)
            batch_preds = batch_preds.data.cpu().numpy()

            # Inverse scale if regression
            if scaler is not None:
                batch_preds = scaler.inverse_transform(batch_preds)

            # Collect vectors
            batch_preds = batch_preds.tolist()
            preds.extend(batch_preds)

        elif aleatoric and not mc_dropout:
            with torch.no_grad():

                #############################
                # batch feature
                batch_preds, batch_logvar, batch_feature = model(
                    batch, features_batch)
                #############################

                batch_var = torch.exp(batch_logvar)
            batch_preds = batch_preds.data.cpu().numpy()
            batch_ale_unc = batch_var.data.cpu().numpy()

            ############################
            batch_feature = batch_feature.data.cpu().numpy()
            features.extend(batch_feature)
            ############################

            # Inverse scale if regression
            if scaler is not None:
                batch_preds = scaler.inverse_transform(batch_preds)
                batch_ale_unc = scaler.inverse_transform_variance(
                    batch_ale_unc)

            # Collect vectors
            batch_preds = batch_preds.tolist()
            batch_ale_unc = batch_ale_unc.tolist()
            preds.extend(batch_preds)
            ale_unc.extend(batch_ale_unc)

        elif not aleatoric and mc_dropout:
            with torch.no_grad():
                P_mean = []

                for ss in range(sampling_size):
                    batch_preds = model(batch, features_batch)
                    P_mean.append(batch_preds)

                batch_preds = torch.mean(torch.stack(P_mean), 0)
                batch_epi_unc = torch.var(torch.stack(P_mean), 0)

            batch_preds = batch_preds.data.cpu().numpy()
            batch_epi_unc = batch_epi_unc.data.cpu().numpy()

            # Inverse scale if regression
            if scaler is not None:
                batch_preds = scaler.inverse_transform(batch_preds)
                batch_epi_unc = scaler.inverse_transform_variance(
                    batch_epi_unc)

            # Collect vectors
            batch_preds = batch_preds.tolist()
            batch_epi_unc = batch_epi_unc.tolist()

            preds.extend(batch_preds)
            epi_unc.extend(batch_epi_unc)

        elif aleatoric and mc_dropout:
            with torch.no_grad():
                P_mean = []
                P_logvar = []

                for ss in range(sampling_size):
                    batch_preds, batch_logvar = model(batch, features_batch)
                    P_mean.append(batch_preds)
                    P_logvar.append(torch.exp(batch_logvar))

                batch_preds = torch.mean(torch.stack(P_mean), 0)
                batch_ale_unc = torch.mean(torch.stack(P_logvar), 0)
                batch_epi_unc = torch.var(torch.stack(P_mean), 0)

            batch_preds = batch_preds.data.cpu().numpy()
            batch_ale_unc = batch_ale_unc.data.cpu().numpy()
            batch_epi_unc = batch_epi_unc.data.cpu().numpy()

            # Inverse scale if regression
            if scaler is not None:
                batch_preds = scaler.inverse_transform(batch_preds)
                batch_ale_unc = scaler.inverse_transform_variance(
                    batch_ale_unc)
                batch_epi_unc = scaler.inverse_transform_variance(
                    batch_epi_unc)

            # Collect vectors
            batch_preds = batch_preds.tolist()
            batch_ale_unc = batch_ale_unc.tolist()
            batch_epi_unc = batch_epi_unc.tolist()

            preds.extend(batch_preds)
            ale_unc.extend(batch_ale_unc)
            epi_unc.extend(batch_epi_unc)

    if not aleatoric and not mc_dropout:
        return preds, None, None, features
    elif aleatoric and not mc_dropout:
        return preds, ale_unc, None, features
    elif not aleatoric and mc_dropout:
        return preds, None, epi_unc, features
    elif aleatoric and mc_dropout:
        return preds, ale_unc, epi_unc, features
Example #23
0
def predict(model: nn.Module,
            data_loader: MoleculeDataLoader,
            disable_progress_bar: bool = False,
            scaler: StandardScaler = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data_loader: A MoleculeDataLoader.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A StandardScaler object fit on the training targets.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """

    UQ = model.uncertainty
    two_vals = UQ == 'Dropout_VI' or UQ == 'Ensemble'
    mve = model.mve
    training = model.training
    if UQ != 'Dropout_VI':
        model.eval()

    total_batch_preds = []
    total_var_preds = []
    for batch in tqdm(data_loader, disable=disable_progress_bar):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch = batch.batch_graph(), batch.features()

        # Make predictions
        if two_vals:
            with torch.no_grad():
                batch_preds, logvar_preds = model(mol_batch, features_batch)
            var_preds = torch.exp(logvar_preds)
            var_preds = var_preds.data.cpu().numpy().tolist()
            total_var_preds.extend(var_preds)

        else:
            with torch.no_grad():
                batch_preds = model(mol_batch, features_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Collect vectors
        batch_preds = batch_preds.tolist()
        total_batch_preds.extend(batch_preds)

    if mve:
        p = []
        c = []
        for i in range(len(total_batch_preds)):
            p.append([
                total_batch_preds[i][j]
                for j in range(len(total_batch_preds[i])) if j % 2 == 0
            ])
            c.append([
                total_batch_preds[i][j]
                for j in range(len(total_batch_preds[i])) if j % 2 == 1
            ])

        if scaler is not None:
            p = scaler.inverse_transform(p).tolist()
            c = (scaler.stds**2 * c).tolist()

        if not training:
            return p, c
        else:
            return p

    # Inverse scale if regression
    if scaler is not None:
        total_batch_preds = scaler.inverse_transform(
            total_batch_preds).tolist()

    if not UQ or training or not two_vals:
        return total_batch_preds
    else:
        return total_batch_preds, total_var_preds
def run_training_gnn_xgb(args: TrainArgs,
                         logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(train_data=train_data,
                           val_data=val_data,
                           test_data=test_data,
                           data_path=args.data_path,
                           save_dir=args.save_dir)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    val_smiles, val_targets = val_data.smiles(), val_data.targets()
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(
                        f'Validation {task_name} {args.metric} = {val_score:.6f}'
                    )
                    writer.add_scalar(f'validation_{task_name}_{args.metric}',
                                      val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

                # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        test_preds, _ = predict(model=model,
                                data_loader=test_data_loader,
                                scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(
                    f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                )
                writer.add_scalar(f'test_{task_name}_{args.metric}',
                                  test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    _, train_feature = predict(model=model,
                               data_loader=train_data_loader,
                               scaler=scaler)
    _, val_feature = predict(model=model,
                             data_loader=val_data_loader,
                             scaler=scaler)
    _, test_feature = predict(model=model,
                              data_loader=test_data_loader,
                              scaler=scaler)

    return ensemble_scores, train_feature, val_feature, test_feature, train_targets, val_targets, test_targets
def predict(model: nn.Module,
            data_loader: MoleculeDataLoader,
            args: TrainArgs,
            disable_progress_bar: bool = False,
            scaler: StandardScaler = None,
            test_data: bool = False,
            gp_sample: bool = False,
            bbp_sample: bool = False) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A model.
    :param data_loader: A MoleculeDataLoader.
    :param args: Arguments.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A StandardScaler object fit on the training targets.
    :param test_data: Flag indicating whether data is test data.
    :return: A list of lists of predictions. The outer list is examples
    while the inner list is tasks.
    """

    ### seed to ensure single network sampled across batches
    if args.thompson:
        network_seed = np.random.randint(1e15)

    ########## detection of gp or bayeslinear layer or DUN

    try:
        model.gp_layer
    except:
        gp = False
    else:
        gp = True

    bbp = False
    for layer in model.children():
        if isinstance(layer, BayesLinear):
            bbp = True
            break

    try:
        model.log_cat
    except:
        dun = False
    else:
        dun = True

    # set model to eval mode
    model.eval()

    # enable dropout layers with test data, if args.test_dropout == True
    if args.test_dropout and test_data:
        model.apply(enable_dropout)

    preds = []

    #for batch in tqdm(data_loader, disable=disable_progress_bar):
    for batch in data_loader:
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch = batch.batch_graph(), batch.features()

        # Make predictions
        with torch.no_grad():
            if gp:
                if gp_sample:
                    batch_preds = model(mol_batch, features_batch).sample()
                else:
                    batch_preds = model(mol_batch, features_batch).mean
            elif bbp:
                if dun:
                    batch_preds, _, _, _ = model(mol_batch,
                                                 features_batch,
                                                 sample=bbp_sample)
                else:
                    if args.thompson:
                        torch.manual_seed(network_seed)
                    batch_preds, _ = model(mol_batch,
                                           features_batch,
                                           sample=bbp_sample)
            else:
                if args.thompson:
                    torch.manual_seed(network_seed)
                batch_preds = model(mol_batch, features_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

    return preds