Example #1
0
def check_rd_integration_run(cb, forgiveness=10, **kwargs):
    """
    Tests whether numerical solution is within error-bounds
    of reference solution. User provided callback "cb" needs
    to return a tuple of (yout, linCref, rd, info).
    """
    yout, linCref, rd, info = cb(**kwargs)
    assert info['success']
    for i in range(rd.n):
        try:
            atol = info['atol'][i]
        except:
            atol = info['atol']

        try:
            rtol = info['rtol'][i]
        except:
            rtol = info['rtol']
        lb, ub = solver_linear_error(yout[..., i], rtol, atol, rd.logy,
                                     scale_err=forgiveness, expb=rd.expb)
        assert np.all(lb < linCref[..., i])
        assert np.all(ub > linCref[..., i])
Example #2
0
def integrate_rd(tend=2.0, A0=1.0, nt=67, t0=0.0,
                 rates='3.40715,4.0', logy=False, logt=False,
                 plot=False, savefig='None', method='bdf',
                 atol='1e-7,1e-6,1e-5', rtol='1e-6', sigm_damp=False,
                 num_jac=False, scale_err=1.0, small='None', use_log2=False,
                 plotlogy=False, plotlogt=False, verbose=False):
    """
    Analytic solution through Bateman equation =>
    ensure :math:`|k_i - k_j| \gg eps`
    """
    k = list(map(float, rates.split(',')))
    n = len(k)+1
    if n > 4:
        raise ValueError("Max 3 consequtive decays supported at the moment.")

    atol = list(map(float, atol.split(',')))
    if len(atol) == 1:
        atol = atol[0]
    rtol = float(rtol)

    rd = ReactionDiffusion(
        n, [[i] for i in range(n-1)], [[i] for i in range(1, n)],
        k, logy=logy, logt=logt, use_log2=use_log2)

    y0 = np.zeros(n)
    y0[0] = A0
    if small == 'None':
        tiny = None
    else:
        tiny = 0
        y0 += float(small)
    tout = np.linspace(t0, tend, nt)
    integr = run(rd, y0, tout, atol=atol, rtol=rtol, method=method,
                 with_jacobian=not num_jac, sigm_damp=sigm_damp, tiny=tiny)
    Cout, yout, info = integr.Cout, integr.yout, integr.info
    Cref = get_Cref(k, y0, tout - tout[0]).reshape((nt, 1, n))

    if verbose:
        print('rate: ', k)
        print(info)

    if plot:
        nshow = min(n, 3)
        try:
            min_atol = min(info['atol'])
        except:
            min_atol = info['atol']

        import matplotlib.pyplot as plt
        plt.figure(figsize=(6, 10))
        c = 'rgb'
        for i, l in enumerate('ABC'[:nshow]):
            ax = plt.subplot(nshow+1, 1, 1)
            if plotlogy:
                ax.set_yscale('log')
            if plotlogt:
                ax.set_xscale('log')
            ax.plot(tout, Cout[:, 0, i], label=l, color=c[i])

            ax = plt.subplot(nshow+1, 1, 2+i)
            if plotlogy:
                ax.set_yscale('symlog')  # abs error might be < 0
            if plotlogt:
                ax.set_xscale('log')
            ax.plot(tout, (Cout[:, 0, i]-Cref[:, 0, i])/min_atol,
                    label=l, color=c[i])

            try:
                atol = info['atol'][i]
            except:
                atol = info['atol']

            try:
                rtol = info['rtol'][i]
            except:
                rtol = info['rtol']

            le_l, le_u = solver_linear_error(
                yout[:, 0, i], rtol, atol, rd.logy, scale_err=scale_err, expb=rd.expb)
            plt.fill_between(tout, (le_l - Cout[:, 0, i])/min_atol,
                             (le_u - Cout[:, 0, i])/min_atol,
                             color=c[i], alpha=0.2)

            # Print indices and values of violations of (scaled) error bounds
            def _print(violation):
                print(violation)
                print(le_l[violation],
                      Cref[violation, 0, i],
                      le_u[violation])
            l_viols = np.where(le_l > Cref[:, 0, i])[0]
            u_viols = np.where(le_u < Cref[:, 0, i])[0]
            if verbose and (len(l_viols) > 0 or len(u_viols) > 0):
                print("Outside error bounds for rtol, atol:", rtol, atol)
                # for violation in chain(l_viols, u_viols):
                #     _print(violation)

        plt.subplot(nshow+1, 1, 1)
        plt.title('Concentration vs. time')
        plt.legend(loc='best', prop={'size': 11})
        plt.xlabel('t')
        plt.ylabel('[X]')
        for i in range(nshow):
            plt.subplot(nshow+1, 1, 2+i)
            plt.title('Absolute error in [{}](t) / min(atol)'.format('ABC'[i]))
            plt.legend(loc='best')
            plt.xlabel('t')
            plt.ylabel('|E[{0}]| / {1:7.0g}'.format('ABC'[i], min_atol))
        plt.tight_layout()
        save_and_or_show_plot(savefig=savefig)

    return integr.yout, Cref, rd, info
Example #3
0
def test_solver_linear_error():
    assert np.allclose(solver_linear_error(1.0, 1.0, 1.0), [-1, 3])