Example #1
0
    ct = CoopTrain(df,
                   corelen=4,
                   flip_th=True,
                   positive_cores=["GGAA", "GGAT"])

    # using custom imads model
    imads_paths = [
        "input/site_models/imads_models/Ets1_w12_GGAA.model",
        "input/site_models/imads_models/Ets1_w12_GGAT.model"
    ]
    imads_cores = ["GGAA", "GGAT"]
    imads_models = [
        iMADSModel(path, core, 12, [1, 2, 3])
        for path, core in zip(imads_paths, imads_cores)
    ]
    imads = iMADS(imads_models, 0.19)  # 0.2128

    # get the features from the CoopTrain class
    feature_dict = {
        "distance": {
            "type": "numerical"
        },
        "orientation": {
            "positive_cores": ["GGAA", "GGAT"],
            "one_hot": True
        },
        "affinity": {
            "imads": imads
        }
    }
    train = ct.get_feature_all(feature_dict)
Example #2
0
import os
os.chdir("../..")

from chip2probe.sitespredict.imads import iMADS
from chip2probe.sitespredict.imadsmodel import iMADSModel
from chip2probe.sitespredict.pbmescore import PBMEscore
from chip2probe.sitespredict.dnasequence import DNASequence

if __name__ == "__main__":
    imads12_paths = [
        "input/site_models/imads_models/Ets1_w12_GGAA.model",
        "input/site_models/imads_models/Ets1_w12_GGAT.model"
    ]
    imads12_cores = ["GGAA", "GGAT"]
    imads12_models = [
        iMADSModel(path, core, 12, [1, 2, 3])
        for path, core in zip(imads12_paths, imads12_cores)
    ]
    imads12 = iMADS(imads12_models, 0.19)  # 0.2128

    escore = PBMEscore("input/site_models/escores/Ets1_8mers_11111111.txt")

    seq = DNASequence("CAGCTGGCCGGAACCTGCGTCCCCTTCCCCCGCCGC", imads12, escore)
    print(seq.sites)