Example #1
0
 def __str__(self):
     strs = ['#p\t#q\t#f\t#dp\t#y']
     for i, Dy in enumerate(self.support_):
         strs.append('{0}\t{1}\t{2}\t{3}\t{4}'.format(
             self.p(i), self.q(i), npvec2str(self.f(i)),
             npvec2str(self.dtheta(i)), Dy.projection))
     strs.append('#\t#\t#<f>\t#\t#')
     strs.append(' \t \t%s\t \t ' % npvec2str(self.uf()))
     return '\n'.join(strs)
Example #2
0
 def __str__(self):
     strs = ['#p\t#q\t#f\t#dp\t#y']
     for i, Dy in enumerate(self.support_):
         strs.append('{0}\t{1}\t{2}\t{3}\t{4}'.format(self.p(i),
             self.q(i),
             npvec2str(self.f(i)),
             npvec2str(self.dtheta(i)),
             Dy.projection))
     strs.append('#\t#\t#<f>\t#\t#')
     strs.append(' \t \t%s\t \t ' % npvec2str(self.uf()))
     return '\n'.join(strs)
Example #3
0
        def f(w):

            self.iteration += 1

            # the joint update is no longer supported: self.wmap.update(w)
            self.history.append(w)
            self.wmap.proxy.update(w)
            logging.info('[%d/%d] lambda=%s', self.parent_iteration,
                         self.iteration, npvec2str(w))

            #logging.info('[%d/%d] sampling ...', self.parent_iteration, self.iteration)
            self.sample()

            #logging.info('[%d/%d] KL ...', self.parent_iteration, self.iteration)
            divergences, derivatives = self.KL()

            kl = divergences.mean(0)
            dkl = derivatives.mean(0)
            # r_weight
            r_weight = 0
            # regularised
            regulariser = LA.norm(w, 2)

            r_obj = kl + r_weight * regulariser
            r_jac = dkl + 2 * r_weight * w

            logging.info('[%d/%d] KL=%s regularised=%f', self.parent_iteration,
                         self.iteration, kl, r_obj)

            return r_obj, r_jac
Example #4
0
 def callback(theta):
     logging.info('[%d] new theta: %s', self.iteration,
                  npvec2str(theta))
     # register the theta
     self.wmap.target.update(theta)
     self.selected_thetas.append(theta)
     self.last_callback = self.iteration
Example #5
0
        def f(theta):

            run.next_proxysgd()
            self.wmap.proxy.update(theta)
            logging.info('[%s] lambda=%s', run, npvec2str(theta))

            OBJ = []
            JAC = []
            H = []
            dH = []
            for i, seg in enumerate(devset):
                derivations = S[i]
                lmap = L[i]
                local_obj, local_jac, local_H, local_dH = get_obj_and_jac(
                    derivations,
                    q_wmap=self.wmap.proxy,
                    p_wmap=self.wmap.target,
                    lmap=lmap,
                    empirical_q=False)

                OBJ.append(local_obj)
                JAC.append(local_jac)
                H.append(local_H)
                dH.append(local_dH)

            obj, jac = np.mean(OBJ, 0), np.mean(JAC, 0)
            if polarity != 1:
                obj *= polarity
                jac *= polarity

            if Tq == 0.0 and l2_weight == 0.0:
                logging.info('[%s] O=%f', run, obj)
                return obj, jac
            else:
                r_obj = obj
                r_jac = jac.copy()

                if Tq != 0.0:
                    r_obj -= Tq * np.mean(H, 0)
                    r_jac -= Tq * np.mean(dH, 0)
                    logging.info('[%s] O=%f H-regularised=%f', run, obj, r_obj)

                if l2_weight != 0.0:  # regularised
                    regulariser = LA.norm(theta, 2)**2
                    r_obj += l2_weight * regulariser
                    r_jac += 2 * l2_weight * theta
                    logging.info('[%s] O=%f L2-regularised=%f', run, obj,
                                 r_obj)
                return r_obj, r_jac
Example #6
0
        def f(theta):

            run.next_targetsgd()

            self.wmap.target.update(theta)
            logging.info('[%s] theta=%s', run, npvec2str(theta))

            R = []
            dR = []
            H = []
            dH = []
            for i, seg in enumerate(devset):
                derivations = S[i]
                lmap = L[i]
                local_R, local_dR, local_H, local_dH = optalg.minrisk(
                    derivations,
                    q_wmap=self.wmap.proxy,
                    p_wmap=self.wmap.target,
                    lmap=lmap,
                    empirical_q=True)

                R.append(local_R)
                dR.append(local_dR)
                H.append(local_H)
                dH.append(local_dH)

            obj, jac = np.mean(R, 0), np.mean(dR, 0)

            if Tp == 0.0 and l2_weight == 0.0:
                logging.info('[%s] Risk=%f', run, obj)
                return obj, jac
            else:
                r_obj = obj
                r_jac = jac.copy()

                if Tp != 0.0:  # H-regularised
                    r_obj -= Tp * np.mean(H, 0)
                    r_jac -= Tp * np.mean(dH, 0)
                    logging.info('[%s] Risk=%f H-regularised=%f', run, obj,
                                 r_obj)

                if l2_weight != 0.0:  # L2-regularised
                    regulariser = LA.norm(theta, 2)**2
                    r_obj += l2_weight * regulariser
                    r_jac += 2 * l2_weight * theta
                    logging.info('[%s] Risk=%f L2-regularised=%f', run, obj,
                                 r_obj)

                return r_obj, r_jac
Example #7
0
def save_estimates(sid, empdist, losses, posterior, risk, dR, stems):
    """

    """

    with open('{0}/{1}'.format(stems[0], sid), 'w') as fo:
        print >> fo, empdist
    
    with open('{0}/{1}'.format(stems[1], sid), 'w') as fo:
        print >> fo, '#loss'
        print >> fo, '\n'.join('%.4f' % l for l in losses)
    
    with open('{0}/{1}'.format(stems[2], sid), 'w') as fo:
        print >> fo, '#risk\t#dR'
        print >> fo, '{0}\t{1}'.format(risk, npvec2str(dR)) 
Example #8
0
        def f(theta):

            self.iteration += 1

            # the joint update is no longer supported: self.wmap.update(w)
            self.wmap.target.update(theta)

            logging.info('[%d] theta=%s', self.iteration, npvec2str(theta))

            # KL here?
            # optimises KL if necessary
            if self.kl_current > self.kl_min * self.kl_coeff or self.iteration > self.kl_lastit + 10:
                lambdas, self.kl_min = self.optimise_proxy(target=theta)
                self.kl_lastit = self.iteration
                # register the lambda
                self.wmap.proxy.update(lambdas)
                self.selected_lambdas.append(lambdas)

            #logging.info('[%d] sampling ...', self.iteration)
            self.sample()

            # logging.info('[%d] decision rules ...', self.iteration)
            # self.decide()
            # compute loss

            #logging.info('[%d] assessing risk ...', self.iteration)
            risks, jacs, kls = self.risk()

            risk = risks.mean(0)
            jac = jacs.mean(0)
            kl = kls.mean(0)
            if kl < self.kl_min:
                self.kl_min = kl
            self.kl_current = kl

            # r_weight
            r_weight = 0
            # regularised
            regulariser = LA.norm(theta, 2)
            r_obj = risk + r_weight * regulariser
            r_jac = jac + 2 * r_weight * theta

            logging.info('[%d] RISK=%f regularised=%f KL=%f', self.iteration,
                         risk, r_obj, kl)
            #logging.info('[%d] jac=%s', self.iteration, jac)

            return r_obj, r_jac
Example #9
0
 def callback(w):
     self.selected.append(w)
     logging.info('[%d/%d] new lambda: %s', self.parent_iteration,
                  self.iteration, npvec2str(w))
Example #10
0
    def optimise(self):

        self.iteration = -1

        self.history = []
        self.selected = []

        def f(w):

            self.iteration += 1

            # the joint update is no longer supported: self.wmap.update(w)
            self.history.append(w)
            self.wmap.proxy.update(w)
            logging.info('[%d/%d] lambda=%s', self.parent_iteration,
                         self.iteration, npvec2str(w))

            #logging.info('[%d/%d] sampling ...', self.parent_iteration, self.iteration)
            self.sample()

            #logging.info('[%d/%d] KL ...', self.parent_iteration, self.iteration)
            divergences, derivatives = self.KL()

            kl = divergences.mean(0)
            dkl = derivatives.mean(0)
            # r_weight
            r_weight = 0
            # regularised
            regulariser = LA.norm(w, 2)

            r_obj = kl + r_weight * regulariser
            r_jac = dkl + 2 * r_weight * w

            logging.info('[%d/%d] KL=%s regularised=%f', self.parent_iteration,
                         self.iteration, kl, r_obj)

            return r_obj, r_jac

        def callback(w):
            self.selected.append(w)
            logging.info('[%d/%d] new lambda: %s', self.parent_iteration,
                         self.iteration, npvec2str(w))

        self.result_ = minimize(
            f,
            self.wmap.proxy.asarray,
            method='L-BFGS-B',
            jac=True,
            callback=callback,
            options={
                'maxfun': 10,
                'ftol': 1e-6,
                'gtol': 1e-3,
                'disp': False
            })  # TODO find a way to stop the search earlier 'maxfun'

        logging.info('[%d/%d] final KL=%s lambda=%s',
                     self.parent_iteration, self.iteration, self.result_.fun,
                     npvec2str(self.result_.x))

        return self.result_.x, self.result_.fun
Example #11
0
 def callback(theta):
     logging.info('[%s] new lambda: %s', run, npvec2str(theta))