def load_data(dataset=10, is_tune=False): if dataset == 10: (train_data, train_labels), (test_data, test_labels) = cifar10.load_data() if dataset == 100: (train_data, train_labels), (test_data, test_labels) = cifar100.load_data() if is_tune: test_data = train_data[:5000] test_labels = train_labels[:5000] train_data = train_data[5000:] train_labels = train_labels[5000:] # (N, 1) --> (N,) train_labels = np.squeeze(train_labels) test_labels = np.squeeze(test_labels) # per image standarizartion test_data = per_image_standardization(test_data) train_data = per_image_standardization(train_data) print('Load dataset: [CIFAR%d], is_tune: [%s], is_preprocessed: [%s]' % (dataset, is_tune, 'True')) print('Train_data: {}, Test_data: {}'.format(train_data.shape, test_data.shape)) return (train_data, train_labels), (test_data, test_labels)
def main(_): pp.pprint(flags.FLAGS.__flags) # Load the class order order = [] with open('cifar-100_%s.txt' % FLAGS.order_file) as file_in: for line in file_in.readlines(): order.append(int(line)) order = np.array(order) import cifar100 NUM_CLASSES = 100 # number of classes NUM_TRAIN_SAMPLES_PER_CLASS = 500 # number of training samples per class train_images, train_labels, train_one_hot_labels, \ test_images, test_labels, test_one_hot_labels, \ _, _, _ = cifar100.load_data(order, mean_subtraction=True) # Number of all training samples NUM_TRAIN_SAMPLES_TOTAL = NUM_CLASSES * NUM_TRAIN_SAMPLES_PER_CLASS def build_cnn(inputs, is_training): train_or_test = {True: 'train', False: 'test'} if FLAGS.network_arch == 'lenet': logits, end_points = utils_lenet.lenet( inputs, num_classes=NUM_CLASSES, is_training=is_training, use_dropout=FLAGS.use_dropout, scope=('LeNet-' + train_or_test[is_training])) elif FLAGS.network_arch == 'resnet': logits, end_points = utils_resnet.ResNet( inputs, train_or_test[is_training], num_outputs=NUM_CLASSES, alpha=0.0, n=FLAGS.num_resblocks, scope=('ResNet-' + train_or_test[is_training])) elif FLAGS.network_arch == 'nin': logits, end_points = utils_nin.nin( inputs, is_training=is_training, num_classes=NUM_CLASSES, scope=('NIN-' + train_or_test[is_training])) else: raise Exception('Invalid network architecture') return logits, end_points # Save all intermediate result in the result_folder method_name = '_'.join( os.path.basename(__file__).split('.')[0].split('_')[2:]) cls_func = '' if FLAGS.use_softmax else '_sigmoid' result_folder = os.path.join( FLAGS.result_dir, 'cifar-100_' + FLAGS.order_file, 'nb_cl_' + str(FLAGS.nb_cl), 'non_truncated' if FLAGS.no_truncate else 'truncated', FLAGS.network_arch + ('_%d' % FLAGS.num_resblocks if FLAGS.network_arch == 'resnet' else '') + cls_func + '_init_' + FLAGS.init_strategy, 'weight_decay_' + str(FLAGS.weight_decay), 'base_lr_' + str(FLAGS.base_lr), method_name) # Add a "_run-i" suffix to the folder name if the folder exists if os.path.exists(result_folder): temp_i = 2 while True: result_folder_mod = result_folder + '_run-' + str(temp_i) if not os.path.exists(result_folder_mod): result_folder = result_folder_mod break temp_i += 1 os.makedirs(result_folder) print('Result folder: %s' % result_folder) ''' Define variables ''' batch_images = tf.placeholder(tf.float32, shape=[None, 32, 32, 3]) batch = tf.Variable(0, trainable=False) learning_rate = tf.placeholder(tf.float32, shape=[]) ''' Network output mask ''' mask_output = tf.placeholder(tf.bool, shape=[NUM_CLASSES]) ''' Old and new ground truth ''' one_hot_labels_truncated = tf.placeholder(tf.float32, shape=[None, None]) ''' Define the training network ''' train_logits, _ = build_cnn(batch_images, True) train_masked_logits = tf.gather(train_logits, tf.squeeze(tf.where(mask_output)), axis=1) train_masked_logits = tf.cond( tf.equal(tf.rank(train_masked_logits), 1), lambda: tf.expand_dims(train_masked_logits, 1), lambda: train_masked_logits) train_pred = tf.argmax(train_masked_logits, 1) train_ground_truth = tf.argmax(one_hot_labels_truncated, 1) correct_prediction = tf.equal(train_pred, train_ground_truth) train_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) reg_weights = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) regularization_loss = FLAGS.weight_decay * tf.add_n(reg_weights) ''' More Settings ''' if FLAGS.use_softmax: empirical_loss = tf.losses.softmax_cross_entropy( onehot_labels=one_hot_labels_truncated, logits=train_masked_logits) else: empirical_loss = tf.losses.sigmoid_cross_entropy( multi_class_labels=one_hot_labels_truncated, logits=train_masked_logits) loss = empirical_loss + regularization_loss if FLAGS.use_momentum: opt = tf.train.MomentumOptimizer( learning_rate, FLAGS.momentum).minimize(loss, global_step=batch) else: opt = tf.train.GradientDescentOptimizer(learning_rate).minimize( loss, global_step=batch) ''' Define the testing network ''' test_logits, _ = build_cnn(batch_images, False) test_masked_logits = tf.gather(test_logits, tf.squeeze(tf.where(mask_output)), axis=1) test_masked_logits = tf.cond(tf.equal(tf.rank(test_masked_logits), 1), lambda: tf.expand_dims(test_masked_logits, 1), lambda: test_masked_logits) test_pred = tf.argmax(test_masked_logits, 1) test_accuracy = tf.placeholder(tf.float32) ''' Copy network (define the copying op) ''' if FLAGS.network_arch == 'resnet': all_variables = tf.get_collection(tf.GraphKeys.WEIGHTS) else: all_variables = tf.trainable_variables() copy_ops = [ all_variables[ix + len(all_variables) // 2].assign(var.value()) for ix, var in enumerate(all_variables[0:len(all_variables) // 2]) ] ''' Init certain layers when new classes added ''' init_ops = tf.no_op() if FLAGS.init_strategy == 'all': init_ops = tf.global_variables_initializer() elif FLAGS.init_strategy == 'last': if FLAGS.network_arch == 'lenet': init_vars = [ var for var in tf.global_variables() if 'fc4' in var.name and 'train' in var.name ] elif FLAGS.network_arch == 'resnet': init_vars = [ var for var in tf.global_variables() if 'fc' in var.name and 'train' in var.name ] elif FLAGS.network_arch == 'nin': init_vars = [ var for var in tf.global_variables() if 'ccp6' in var.name and 'train' in var.name ] init_ops = tf.initialize_variables(init_vars) ''' Create session ''' config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ''' Summary ''' train_loss_summary = tf.summary.scalar('train_loss', loss) train_acc_summary = tf.summary.scalar('train_accuracy', train_accuracy) test_acc_summary = tf.summary.scalar('test_accuracy', test_accuracy) summary_dir = os.path.join(result_folder, 'summary') if not os.path.exists(summary_dir): os.makedirs(summary_dir) train_summary_writer = tf.summary.FileWriter( os.path.join(summary_dir, 'train'), sess.graph) test_summary_writer = tf.summary.FileWriter( os.path.join(summary_dir, 'test')) iteration = 0 ''' Declaration of other vars ''' # Average accuracy on seen classes aver_acc_over_time = dict() aver_acc_per_class_over_time = dict() conf_mat_over_time = dict() # Network mask mask_output_val = np.zeros([NUM_CLASSES], dtype=bool) ''' Class Incremental Learning ''' print('Starting from category ' + str(FLAGS.from_class_idx + 1) + ' to ' + str(FLAGS.to_class_idx + 1)) print('Adding %d categories every time' % FLAGS.nb_cl) assert (FLAGS.from_class_idx % FLAGS.nb_cl == 0) for category_idx in range(FLAGS.from_class_idx, FLAGS.to_class_idx + 1, FLAGS.nb_cl): to_category_idx = category_idx + FLAGS.nb_cl - 1 if FLAGS.nb_cl == 1: print('Adding Category ' + str(category_idx + 1)) else: print('Adding Category %d-%d' % (category_idx + 1, to_category_idx + 1)) if FLAGS.no_truncate: mask_output_val[:] = True else: mask_output_val[:to_category_idx + 1] = True # No need to train the classifier if there is only one class if to_category_idx > 0: # Init certain layers sess.run(init_ops) # Testing set test_indices = [ idx for idx in range(len(test_labels)) if test_labels[idx] <= to_category_idx ] test_x = test_images[test_indices] test_y = test_labels[test_indices] # Training set train_indices = [ idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if train_labels[idx] <= to_category_idx ] train_x = train_images[train_indices, :, :, :] if FLAGS.no_truncate: train_y_truncated = train_one_hot_labels[train_indices, :] else: train_y_truncated = train_one_hot_labels[ train_indices, :to_category_idx + 1] # Shuffle the indices and create mini-batch batch_indices_perm = [] epoch_idx = 0 lr = FLAGS.base_lr while True: # Generate mini-batch if len(batch_indices_perm) == 0: if epoch_idx >= FLAGS.epochs_per_category: break if epoch_idx in lr_strat: lr /= FLAGS.lr_factor print("NEW LEARNING RATE: %f" % lr) epoch_idx = epoch_idx + 1 shuffled_indices = range(len(train_indices)) np.random.shuffle(shuffled_indices) for i in range(0, len(shuffled_indices), FLAGS.train_batch_size): batch_indices_perm.append( shuffled_indices[i:i + FLAGS.train_batch_size]) batch_indices_perm.reverse() popped_batch_idx = batch_indices_perm.pop() # Use the random index to select random images and labels. train_x_batch = train_x[popped_batch_idx, :, :, :] train_y_batch = [ train_y_truncated[k] for k in popped_batch_idx ] # Train train_loss_summary_str, train_acc_summary_str, train_accuracy_val, \ train_loss_val, train_empirical_loss_val, train_reg_loss_val, _ = sess.run( [train_loss_summary, train_acc_summary, train_accuracy, loss, empirical_loss, regularization_loss, opt], feed_dict={batch_images: train_x_batch, one_hot_labels_truncated: train_y_batch, mask_output: mask_output_val, learning_rate: lr}) # Test if iteration % FLAGS.test_interval == 0: sess.run(copy_ops) # Divide and conquer: to avoid allocating too much GPU memory test_pred_val = [] for i in range(0, len(test_x), FLAGS.test_batch_size): test_x_batch = test_x[i:i + FLAGS.test_batch_size] test_pred_val_batch = sess.run(test_pred, feed_dict={ batch_images: test_x_batch, mask_output: mask_output_val }) test_pred_val.extend(test_pred_val_batch) test_accuracy_val = 1. * np.sum( np.equal(test_pred_val, test_y)) / (len(test_pred_val)) test_per_class_accuracy_val = np.diag( confusion_matrix(test_y, test_pred_val)) test_acc_summary_str = sess.run( test_acc_summary, feed_dict={test_accuracy: test_accuracy_val}) test_summary_writer.add_summary(test_acc_summary_str, iteration) print("TEST: step %d, lr %.4f, accuracy %g" % (iteration, lr, test_accuracy_val)) print("PER CLASS ACCURACY: " + " | ".join( str(o) + '%' for o in test_per_class_accuracy_val)) # Print the training logs if iteration % FLAGS.display_interval == 0: train_summary_writer.add_summary(train_loss_summary_str, iteration) train_summary_writer.add_summary(train_acc_summary_str, iteration) print( "TRAIN: epoch %d, step %d, lr %.4f, accuracy %g, loss %g, empirical %g, reg %g" % (epoch_idx, iteration, lr, train_accuracy_val, train_loss_val, train_empirical_loss_val, train_reg_loss_val)) iteration = iteration + 1 ''' Final test(before the next class is added) ''' sess.run(copy_ops) # Divide and conquer: to avoid allocating too much GPU memory test_pred_val = [] for i in range(0, len(test_x), FLAGS.test_batch_size): test_x_batch = test_x[i:i + FLAGS.test_batch_size] test_pred_val_batch = sess.run(test_pred, feed_dict={ batch_images: test_x_batch, mask_output: mask_output_val }) test_pred_val.extend(test_pred_val_batch) test_accuracy_val = 1. * np.sum(np.equal( test_pred_val, test_y)) / (len(test_pred_val)) conf_mat = confusion_matrix(test_y, test_pred_val) test_per_class_accuracy_val = np.diag(conf_mat) # Record and save the cumulative accuracy aver_acc_over_time[to_category_idx] = test_accuracy_val aver_acc_per_class_over_time[ to_category_idx] = test_per_class_accuracy_val conf_mat_over_time[to_category_idx] = conf_mat dump_obj = dict() dump_obj['flags'] = flags.FLAGS.__flags dump_obj['aver_acc_over_time'] = aver_acc_over_time dump_obj[ 'aver_acc_per_class_over_time'] = aver_acc_per_class_over_time dump_obj['conf_mat_over_time'] = conf_mat_over_time np_file_result = os.path.join(result_folder, 'acc_over_time.pkl') with open(np_file_result, 'wb') as file: pickle.dump(dump_obj, file) visualize_result.vis(np_file_result) # Save the final model checkpoint_dir = os.path.join(result_folder, 'checkpoints') if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt')) sess.close()
def main(_): assert FLAGS.balanced pp.pprint(flags.FLAGS.__flags) # Load the class order order = [] with open('cifar-100_%s.txt' % FLAGS.order_file) as file_in: for line in file_in.readlines(): order.append(int(line)) order = np.array(order) assert FLAGS.mode == 'wgan-gp' import cifar100 NUM_CLASSES = 100 # number of classes NUM_TRAIN_SAMPLES_PER_CLASS = 500 # number of training samples per class NUM_TEST_SAMPLES_PER_CLASS = 100 # number of test samples per class train_images, train_labels, train_one_hot_labels, \ test_images, test_labels, test_one_hot_labels, \ raw_images_train, raw_images_test, pixel_mean = cifar100.load_data(order, mean_subtraction=True) # Number of all training samples NUM_TRAIN_SAMPLES_TOTAL = NUM_CLASSES * NUM_TRAIN_SAMPLES_PER_CLASS NUM_TEST_SAMPLES_TOTAL = NUM_CLASSES * NUM_TEST_SAMPLES_PER_CLASS def build_cnn(inputs, is_training): train_or_test = {True: 'train', False: 'test'} if FLAGS.network_arch == 'lenet': logits, end_points = utils_lenet.lenet( inputs, num_classes=NUM_CLASSES, is_training=is_training, use_dropout=FLAGS.use_dropout, scope=('LeNet-' + train_or_test[is_training])) elif FLAGS.network_arch == 'resnet': logits, end_points = utils_resnet.ResNet( inputs, train_or_test[is_training], num_outputs=NUM_CLASSES, alpha=0.0, n=FLAGS.num_resblocks, scope=('ResNet-' + train_or_test[is_training])) elif FLAGS.network_arch == 'nin': logits, end_points = utils_nin.nin( inputs, is_training=is_training, num_classes=NUM_CLASSES, scope=('NIN-' + train_or_test[is_training])) else: raise Exception('Invalid network architecture') return logits, end_points ''' Define variables ''' if not FLAGS.only_gen_no_cls: # Save all intermediate result in the result_folder method_name = '_'.join( os.path.basename(__file__).split('.')[0].split('_')[2:]) method_name += '_gen_%d_and_select' % FLAGS.gen_how_many if FLAGS.gen_more_and_select else '' method_name += '_auto-%.1f-%.1f' % (FLAGS.auto_param1, FLAGS.auto_param2) \ if FLAGS.auto_choose_num_exemplars else ( '_%d' % FLAGS.num_exemplars_per_class if not FLAGS.memory_constrained else '') method_name += '_%s' % FLAGS.exemplar_select_criterion method_name += '_%.1f-%.1f' % (FLAGS.proto_weight, FLAGS.gen_weight) method_name += '_cache_%d' % FLAGS.cache_size_per_class if FLAGS.use_cache_for_gen_samples else '' method_name += '_icarl_%d' % FLAGS.memory_upperbound if FLAGS.memory_constrained else '' method_name += '_reorder' if FLAGS.reorder_exemplars else '' method_name += '' if FLAGS.label_smoothing == 1. else '_smoothing_%.1f' % FLAGS.label_smoothing cls_func = '' if FLAGS.use_softmax else '_sigmoid' result_folder = os.path.join( FLAGS.result_dir, 'cifar-100_' + FLAGS.order_file, 'nb_cl_' + str(FLAGS.nb_cl), 'non_truncated' if FLAGS.no_truncate else 'truncated', FLAGS.network_arch + ('_%d' % FLAGS.num_resblocks if FLAGS.network_arch == 'resnet' else '') + cls_func + '_init_' + FLAGS.init_strategy, 'weight_decay_' + str(FLAGS.weight_decay), 'base_lr_' + str(FLAGS.base_lr), 'adam_lr_' + str(FLAGS.adam_lr)) if FLAGS.gan_finetune and 'gan' in method_name: result_folder = os.path.join( result_folder, method_name + '_finetune_' + FLAGS.pretrained_model_sub_dir.replace('/', '_')) else: result_folder = os.path.join(result_folder, method_name) # Add a "_run-i" suffix to the folder name if the folder exists if os.path.exists(result_folder): temp_i = 2 while True: result_folder_mod = result_folder + '_run-' + str(temp_i) if not os.path.exists(result_folder_mod): result_folder = result_folder_mod break temp_i += 1 os.makedirs(result_folder) print('Result folder: %s' % result_folder) graph_cls = tf.Graph() with graph_cls.as_default(): ''' Define variables ''' batch_images = tf.placeholder(tf.float32, shape=[None, 32, 32, 3]) batch = tf.Variable(0, trainable=False, name='LeNet-train/iteration') learning_rate = tf.placeholder(tf.float32, shape=[]) ''' Network output mask ''' mask_output = tf.placeholder(tf.bool, shape=[NUM_CLASSES]) ''' Old and new ground truth ''' one_hot_labels_truncated = tf.placeholder(tf.float32, shape=[None, None]) ''' Define the training network ''' train_logits, _ = build_cnn(batch_images, True) train_masked_logits = tf.gather(train_logits, tf.squeeze(tf.where(mask_output)), axis=1) train_masked_logits = tf.cond( tf.equal(tf.rank(train_masked_logits), 1), lambda: tf.expand_dims(train_masked_logits, 1), lambda: train_masked_logits) train_pred = tf.argmax(train_masked_logits, 1) train_ground_truth = tf.argmax(one_hot_labels_truncated, 1) correct_prediction = tf.equal(train_pred, train_ground_truth) train_accuracy = tf.reduce_mean( tf.cast(correct_prediction, tf.float32)) train_batch_weights = tf.placeholder(tf.float32, shape=[None]) reg_weights = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) regularization_loss = FLAGS.weight_decay * tf.add_n(reg_weights) ''' More Settings ''' if FLAGS.use_softmax: empirical_loss = tf.losses.softmax_cross_entropy( onehot_labels=one_hot_labels_truncated, logits=train_masked_logits, weights=train_batch_weights) else: empirical_loss = tf.losses.sigmoid_cross_entropy( multi_class_labels=one_hot_labels_truncated, logits=train_masked_logits, weights=train_batch_weights) loss = empirical_loss + regularization_loss if FLAGS.use_momentum: opt = tf.train.MomentumOptimizer( learning_rate, FLAGS.momentum).minimize(loss, global_step=batch) else: opt = tf.train.GradientDescentOptimizer( learning_rate).minimize(loss, global_step=batch) ''' Define the testing network ''' test_logits, _ = build_cnn(batch_images, False) test_masked_logits = tf.gather(test_logits, tf.squeeze(tf.where(mask_output)), axis=1) test_masked_logits = tf.cond( tf.equal(tf.rank(test_masked_logits), 1), lambda: tf.expand_dims(test_masked_logits, 1), lambda: test_masked_logits) test_masked_prob = tf.nn.softmax(test_masked_logits) test_pred = tf.argmax(test_masked_logits, 1) test_accuracy = tf.placeholder(tf.float32) ''' Copy network (define the copying op) ''' if FLAGS.network_arch == 'resnet': all_variables = tf.get_collection(tf.GraphKeys.WEIGHTS) else: all_variables = tf.trainable_variables() copy_ops = [ all_variables[ix + len(all_variables) // 2].assign(var.value()) for ix, var in enumerate(all_variables[0:len(all_variables) // 2]) ] ''' Init certain layers when new classes added ''' init_ops = tf.no_op() if FLAGS.init_strategy == 'all': init_ops = tf.global_variables_initializer() elif FLAGS.init_strategy == 'last': if FLAGS.network_arch == 'lenet': init_vars = [ var for var in tf.global_variables() if 'fc4' in var.name and 'train' in var.name ] elif FLAGS.network_arch == 'resnet': init_vars = [ var for var in tf.global_variables() if 'fc' in var.name and 'train' in var.name ] elif FLAGS.network_arch == 'nin': init_vars = [ var for var in tf.global_variables() if 'ccp6' in var.name and 'train' in var.name ] init_ops = tf.initialize_variables(init_vars) ''' Create session ''' config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config, graph=graph_cls) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ''' Summary ''' train_loss_summary = tf.summary.scalar('train_loss', loss) train_acc_summary = tf.summary.scalar('train_accuracy', train_accuracy) test_acc_summary = tf.summary.scalar('test_accuracy', test_accuracy) summary_dir = os.path.join(result_folder, 'summary') if not os.path.exists(summary_dir): os.makedirs(summary_dir) train_summary_writer = tf.summary.FileWriter( os.path.join(summary_dir, 'train'), sess.graph) test_summary_writer = tf.summary.FileWriter( os.path.join(summary_dir, 'test')) iteration = 0 ''' Declaration of other vars ''' # Average accuracy on seen classes aver_acc_over_time = dict() aver_acc_per_class_over_time = dict() conf_mat_over_time = dict() # Network mask mask_output_val = np.zeros([NUM_CLASSES], dtype=bool) ''' Cache(accelerate) ''' cache_dir = os.path.join(result_folder, 'cache') if not os.path.exists(cache_dir): os.makedirs(cache_dir) ''' Exemplars(for ablation study and other purposes) ''' exemplars_dir = os.path.join(result_folder, 'exemplars') if not os.path.exists(exemplars_dir): os.makedirs(exemplars_dir) ''' Train generative model(DC-GAN) ''' run_config = tf.ConfigProto() run_config.gpu_options.allow_growth = True graph_gen = tf.Graph() sess_wgan = tf.Session(config=run_config, graph=graph_gen) wgan_obj = GAN(sess_wgan, graph_gen, dataset_name='cifar-100', mode=FLAGS.mode, batch_size=FLAGS.batch_size, dim=FLAGS.dim, output_dim=FLAGS.output_dim, lambda_param=FLAGS.lambda_param, critic_iters=FLAGS.critic_iters, iters=FLAGS.iters, result_dir=FLAGS.result_dir_wgan, checkpoint_interval=FLAGS.gan_save_interval, adam_lr=FLAGS.adam_lr, adam_beta1=FLAGS.adam_beta1, adam_beta2=FLAGS.adam_beta2, finetune=FLAGS.gan_finetune, finetune_from=FLAGS.gan_finetune_from, pretrained_model_base_dir=FLAGS.pretrained_model_base_dir, pretrained_model_sub_dir=FLAGS.pretrained_model_sub_dir) exemplars = [] ''' Class Incremental Learning ''' print('Starting from category ' + str(FLAGS.from_class_idx + 1) + ' to ' + str(FLAGS.to_class_idx + 1)) print('Adding %d categories every time' % FLAGS.nb_cl) assert (FLAGS.from_class_idx % FLAGS.nb_cl == 0) for category_idx in range(FLAGS.from_class_idx, FLAGS.to_class_idx + 1, FLAGS.nb_cl): to_category_idx = category_idx + FLAGS.nb_cl - 1 if FLAGS.nb_cl == 1: print('Adding Category ' + str(category_idx + 1)) else: print('Adding Category %d-%d' % (category_idx + 1, to_category_idx + 1)) for category_idx_in_group in range(category_idx, to_category_idx + 1): # Training set(current category) train_indices_gan = [ idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if train_labels[idx] == category_idx_in_group ] test_indices_cur_cls_gan = [ idx for idx in range(NUM_TEST_SAMPLES_TOTAL) if test_labels[idx] == category_idx_in_group ] train_x_gan = raw_images_train[train_indices_gan, :] test_x_cur_cls_gan = raw_images_test[test_indices_cur_cls_gan, :] ''' Train generative model(W-GAN) ''' real_class_idx = order[category_idx_in_group] if wgan_obj.check_model(real_class_idx): print( " [*] Model of Class %d exists. Skip the training process" % (real_class_idx + 1)) else: print( " [*] Model of Class %d does not exist. Start the training process" % (real_class_idx + 1)) wgan_obj.train(train_x_gan, test_x_cur_cls_gan, real_class_idx) ''' Train classification model ''' # No need to train the classifier if there is only one class if not FLAGS.only_gen_no_cls: if FLAGS.no_truncate: mask_output_val[:] = True else: mask_output_val[:to_category_idx + 1] = True if to_category_idx > 0: # init certain layers sess.run(init_ops) ''' Generate samples of new classes ''' train_indices_new = [ idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if category_idx <= train_labels[idx] <= to_category_idx ] train_x_new = raw_images_train[train_indices_new] if FLAGS.no_truncate: train_y_truncated_new = train_one_hot_labels[ train_indices_new, :] else: train_y_truncated_new = train_one_hot_labels[ train_indices_new, :to_category_idx + 1] train_weights_val_new = np.ones(len(train_x_new)) train_x = raw_images_train[[], :] if FLAGS.no_truncate: train_y_truncated = train_one_hot_labels[[], :] else: train_y_truncated = train_one_hot_labels[ [], :to_category_idx + 1] train_weights_val = np.zeros([0]) for new_category_idx in range(category_idx, to_category_idx + 1): if len(exemplars) == 0: num_gen_samples_x_needed = 0 else: num_gen_samples_x_needed = NUM_TRAIN_SAMPLES_PER_CLASS * ( NUM_TRAIN_SAMPLES_PER_CLASS - len(exemplars[0])) / len(exemplars[0]) if num_gen_samples_x_needed > 0: gen_samples_x = [] packs, last_pack = divmod(num_gen_samples_x_needed, 500) batch_size_gens = [] for _ in range(packs): batch_size_gens.append(500) if last_pack > 0: batch_size_gens.append(last_pack) wgan_obj.load(new_category_idx) for pack_num in batch_size_gens: gen_samples_x_batch, _, _ = wgan_obj.test(pack_num) gen_samples_x.extend(gen_samples_x_batch) train_x_new = np.concatenate( (train_x_new, gen_samples_x)) train_weights_val_new = np.concatenate( (train_weights_val_new, np.ones(len(gen_samples_x)) * FLAGS.proto_weight)) if FLAGS.no_truncate: gen_samples_y = np.ones( (num_gen_samples_x_needed, NUM_CLASSES)) * ( (1 - FLAGS.label_smoothing) / (NUM_CLASSES - 1)) else: gen_samples_y = np.ones( (num_gen_samples_x_needed, to_category_idx + 1)) * ((1 - FLAGS.label_smoothing) / to_category_idx) gen_samples_y[:, new_category_idx] = np.ones( (num_gen_samples_x_needed)) * FLAGS.label_smoothing train_y_truncated_new = np.concatenate( (train_y_truncated_new, gen_samples_y)) ''' Generate samples of old classes ''' for old_category_idx in range(0, category_idx): # Load old class model num_gen_samples_x_needed = NUM_TRAIN_SAMPLES_PER_CLASS - len( exemplars[old_category_idx]) if num_gen_samples_x_needed > 0: # if FLAGS.use_cache_for_gen_samples: # cache_file = os.path.join(cache_dir, 'class_%d.npy' % (old_category_idx + 1)) # if os.path.exists(cache_file): # gen_samples_x = np.load(cache_file) # else: # if not wgan_obj.load(old_category_idx)[0]: # raise Exception("[!] Train a model first, then run test mode") # gen_samples_x, _, _ = wgan_obj.test(FLAGS.cache_size_per_class) # np.save(cache_file, gen_samples_x) # # gen_samples_x_idx = np.random.choice(len(gen_samples_x), # num_gen_samples_x_needed, # replace=False) # gen_samples_x = gen_samples_x[gen_samples_x_idx] # else: # if not wgan_obj.load(old_category_idx)[0]: # raise Exception("[!] Train a model first, then run test mode") # gen_samples_x, _, _ = wgan_obj.test(num_gen_samples_x_needed) real_class_idx = order[old_category_idx] if not wgan_obj.load(real_class_idx)[0]: raise Exception( "[!] Train a model first, then run test mode") if FLAGS.gen_more_and_select: gen_samples_x_more, _, _ = wgan_obj.test( FLAGS.gen_how_many) gen_samples_x_more_real = cifar100.convert_images( gen_samples_x_more, pixel_mean=pixel_mean) gen_samples_prob = sess.run( test_masked_prob, feed_dict={ batch_images: gen_samples_x_more_real, mask_output: mask_output_val }) gen_samples_scores_cur_cls = gen_samples_prob[:, old_category_idx] top_k_indices = np.argsort( -gen_samples_scores_cur_cls )[:num_gen_samples_x_needed] gen_samples_x = gen_samples_x_more[top_k_indices] else: gen_samples_x, _, _ = wgan_obj.test( num_gen_samples_x_needed) # import wgan.tflib.save_images # wgan.tflib.save_images.save_images(gen_samples_x[:128].reshape((128, 3, 32, 32)), # 'test.jpg') train_x = np.concatenate((train_x, gen_samples_x, exemplars[old_category_idx])) train_weights_val = np.concatenate( (train_weights_val, np.ones(len(gen_samples_x)) * FLAGS.gen_weight, np.ones(len(exemplars[old_category_idx])) * FLAGS.proto_weight)) elif num_gen_samples_x_needed == 0: train_x = np.concatenate( (train_x, exemplars[old_category_idx])) train_weights_val = np.concatenate( (train_weights_val, np.ones(len(exemplars[old_category_idx])) * FLAGS.proto_weight)) # if FLAGS.no_truncate: # gen_samples_y = np.zeros((NUM_TRAIN_SAMPLES_PER_CLASS, NUM_CLASSES)) # else: # gen_samples_y = np.zeros((NUM_TRAIN_SAMPLES_PER_CLASS, to_category_idx+1)) # gen_samples_y[:, old_category_idx] = np.ones((NUM_TRAIN_SAMPLES_PER_CLASS)) if FLAGS.no_truncate: gen_samples_y = np.ones( (NUM_TRAIN_SAMPLES_PER_CLASS, NUM_CLASSES)) * ( (1 - FLAGS.label_smoothing) / (NUM_CLASSES - 1)) else: gen_samples_y = np.ones( (NUM_TRAIN_SAMPLES_PER_CLASS, to_category_idx + 1)) * ( (1 - FLAGS.label_smoothing) / to_category_idx) gen_samples_y[:, old_category_idx] = np.ones( (NUM_TRAIN_SAMPLES_PER_CLASS)) * FLAGS.label_smoothing train_y_truncated = np.concatenate( (train_y_truncated, gen_samples_y)) # Training set # Convert the raw images from the data-files to floating-points. train_x = cifar100.convert_images(train_x, pixel_mean=pixel_mean) train_x_new = cifar100.convert_images(train_x_new, pixel_mean=pixel_mean) # Testing set test_indices = [ idx for idx in range(len(test_labels)) if test_labels[idx] <= to_category_idx ] test_x = test_images[test_indices] test_y = test_labels[test_indices] # Shuffle the indices and create mini-batch batch_indices_perm = [] epoch_idx = 0 lr = FLAGS.base_lr ''' Training with mixed data ''' old_ratio = float(category_idx) / (to_category_idx + 1) old_batch_size = int(FLAGS.train_batch_size * old_ratio) new_batch_size = FLAGS.train_batch_size - old_batch_size while True: # Generate mini-batch if len(batch_indices_perm) == 0: if epoch_idx >= FLAGS.epochs_per_category: break if epoch_idx in lr_strat: lr /= FLAGS.lr_factor print("NEW LEARNING RATE: %f" % lr) epoch_idx = epoch_idx + 1 # print('Epoch %d' % epoch_idx) if len(train_x) > 0: shuffled_indices = range(train_x.shape[0]) np.random.shuffle(shuffled_indices) for i in range(0, len(shuffled_indices), old_batch_size): batch_indices_perm.append( shuffled_indices[i:i + old_batch_size]) batch_indices_perm.reverse() elif len(train_x) == 0: for i in range(0, len(train_x_new), new_batch_size): batch_indices_perm.append([]) popped_batch_idx = batch_indices_perm.pop() # Use the random index to select random images and labels. train_weights_batch_val_old = train_weights_val[ popped_batch_idx] train_x_batch_old = train_x[popped_batch_idx, :, :, :] train_y_batch_old = np.array( [train_y_truncated[k] for k in popped_batch_idx]) popped_batch_idx_new = np.random.choice(range( len(train_x_new)), new_batch_size, replace=False) train_weights_batch_val_new = train_weights_val_new[ popped_batch_idx_new] train_x_batch_new = train_x_new[ popped_batch_idx_new, :, :, :] train_y_batch_new = np.array([ train_y_truncated_new[k] for k in popped_batch_idx_new ]) if len(train_y_batch_old) == 0: train_y_batch_old.shape = (0, train_y_batch_new.shape[1]) train_x_batch = np.concatenate( (train_x_batch_old, train_x_batch_new)) train_y_batch = np.concatenate( (train_y_batch_old, train_y_batch_new)) train_weights_batch_val = np.concatenate( (train_weights_batch_val_old, train_weights_batch_val_new)) # Train train_loss_summary_str, train_acc_summary_str, train_accuracy_val, \ train_loss_val, train_empirical_loss_val, train_reg_loss_val, _ = sess.run( [train_loss_summary, train_acc_summary, train_accuracy, loss, empirical_loss, regularization_loss, opt], feed_dict={batch_images: train_x_batch, one_hot_labels_truncated: train_y_batch, mask_output: mask_output_val, learning_rate: lr, train_batch_weights: train_weights_batch_val}) # Test if iteration % FLAGS.test_interval == 0: sess.run(copy_ops) # Divide and conquer: to avoid allocating too much GPU memory test_pred_val = [] for i in range(0, len(test_x), FLAGS.test_batch_size): test_x_batch = test_x[i:i + FLAGS.test_batch_size] test_pred_val_batch = sess.run(test_pred, feed_dict={ batch_images: test_x_batch, mask_output: mask_output_val }) test_pred_val.extend(test_pred_val_batch) test_accuracy_val = 1. * np.sum( np.equal(test_pred_val, test_y)) / (len(test_pred_val)) test_per_class_accuracy_val = np.diag( confusion_matrix(test_y, test_pred_val)) test_acc_summary_str = sess.run( test_acc_summary, feed_dict={test_accuracy: test_accuracy_val}) test_summary_writer.add_summary( test_acc_summary_str, iteration) print("TEST: step %d, lr %.4f, accuracy %g" % (iteration, lr, test_accuracy_val)) print("PER CLASS ACCURACY: " + " | ".join( str(o) + '%' for o in test_per_class_accuracy_val)) # Print the training logs if iteration % FLAGS.display_interval == 0: train_summary_writer.add_summary( train_loss_summary_str, iteration) train_summary_writer.add_summary( train_acc_summary_str, iteration) print( "TRAIN: epoch %d, step %d, lr %.4f, accuracy %g, loss %g, empirical %g, reg %g" % (epoch_idx, iteration, lr, train_accuracy_val, train_loss_val, train_empirical_loss_val, train_reg_loss_val)) iteration = iteration + 1 ''' Final test(before the next class is added) ''' sess.run(copy_ops) # Divide and conquer: to avoid allocating too much GPU memory test_pred_val = [] for i in range(0, len(test_x), FLAGS.test_batch_size): test_x_batch = test_x[i:i + FLAGS.test_batch_size] test_pred_val_batch = sess.run(test_pred, feed_dict={ batch_images: test_x_batch, mask_output: mask_output_val }) test_pred_val.extend(test_pred_val_batch) test_accuracy_val = 1. * np.sum(np.equal( test_pred_val, test_y)) / (len(test_pred_val)) conf_mat = confusion_matrix(test_y, test_pred_val) test_per_class_accuracy_val = np.diag(conf_mat) # Record and save the cumulative accuracy aver_acc_over_time[to_category_idx] = test_accuracy_val aver_acc_per_class_over_time[ to_category_idx] = test_per_class_accuracy_val conf_mat_over_time[to_category_idx] = conf_mat dump_obj = dict() dump_obj['flags'] = flags.FLAGS.__flags dump_obj['aver_acc_over_time'] = aver_acc_over_time dump_obj[ 'aver_acc_per_class_over_time'] = aver_acc_per_class_over_time dump_obj['conf_mat_over_time'] = conf_mat_over_time np_file_result = os.path.join(result_folder, 'acc_over_time.pkl') with open(np_file_result, 'wb') as file: pickle.dump(dump_obj, file) visualize_result.vis(np_file_result) # reorder the exemplars if FLAGS.reorder_exemplars: for old_category_idx in range(category_idx): sess.run(copy_ops) # divide and conquer: to avoid allocating too much GPU memory train_prob_cur_cls_exemplars_val = sess.run( test_masked_prob, feed_dict={ batch_images: cifar100.convert_images( exemplars[old_category_idx]), mask_output: mask_output_val }) train_prob_cur_cls_exemplars_val = train_prob_cur_cls_exemplars_val[:, old_category_idx] reorder_indices = np.argsort( -train_prob_cur_cls_exemplars_val) exemplars[old_category_idx] = exemplars[old_category_idx][ reorder_indices] # select the exemplars for category_idx_in_group in range(category_idx, to_category_idx + 1): train_indices_cur_cls = [ idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if train_labels[idx] == category_idx_in_group ] train_x_cur_cls = raw_images_train[train_indices_cur_cls] train_x_cur_cls_normalized = cifar100.convert_images( train_x_cur_cls, pixel_mean=pixel_mean) sess.run(copy_ops) # Divide and conquer: to avoid allocating too much GPU memory train_prob_cur_cls_val = sess.run( test_masked_prob, feed_dict={ batch_images: train_x_cur_cls_normalized, mask_output: mask_output_val }) train_prob_cur_cls_val = train_prob_cur_cls_val[:, category_idx_in_group] # use iCaRL-like memory mechanism to save exemplars or not if FLAGS.memory_constrained: if FLAGS.auto_choose_num_exemplars: # auto or fixed number of exemplars # check if we can save all new samples as exemplars if NUM_TRAIN_SAMPLES_PER_CLASS > FLAGS.memory_upperbound - sum( [len(exemplars[i]) for i in range(len(exemplars))]): # load inception scores of all classes save_exemplars_ratios = [] for i in range(category_idx_in_group + 1): real_class_idx = order[i] inception_score = wgan_obj.load_inception_score( real_class_idx) save_exemplars_ratio = FLAGS.auto_param1 - FLAGS.auto_param2 * inception_score save_exemplars_ratios.append( save_exemplars_ratio) save_exemplars_ratios = np.array( save_exemplars_ratios) keep_exemplars_num = np.floor( save_exemplars_ratios * FLAGS.memory_upperbound / sum(save_exemplars_ratios)).astype(int) for old_category_idx in range( category_idx_in_group): exemplars[old_category_idx] = exemplars[ old_category_idx][:keep_exemplars_num[ old_category_idx]] num_exemplars_cur_cls = keep_exemplars_num[-1] else: num_exemplars_cur_cls = NUM_TRAIN_SAMPLES_PER_CLASS else: num_exemplars_per_cls = int( FLAGS.memory_upperbound // (category_idx_in_group + 1)) num_exemplars_per_cls = min( num_exemplars_per_cls, NUM_TRAIN_SAMPLES_PER_CLASS) # remove redundant elements in the memory for previous classes if category_idx_in_group > 0 and len( exemplars[0]) > num_exemplars_per_cls: for old_category_idx in range( category_idx_in_group): exemplars[old_category_idx] = exemplars[ old_category_idx][:num_exemplars_per_cls] # add how many new elements in the memory for the current class num_exemplars_cur_cls = num_exemplars_per_cls print(' [*] Store %d exemplars for each class' % num_exemplars_cur_cls) else: if FLAGS.auto_choose_num_exemplars: # auto or fixed number of exemplars real_class_idx = order[category_idx_in_group] inception_score = wgan_obj.load_inception_score( real_class_idx) num_exemplars_cur_cls = int( np.floor(FLAGS.auto_param1 - FLAGS.auto_param2 * inception_score)) print(' [*] Inception score %f, store %d exemplars' % (inception_score, num_exemplars_cur_cls)) else: num_exemplars_cur_cls = FLAGS.num_exemplars_per_class selected_indices = np.array(range(len(train_prob_cur_cls_val))) if FLAGS.exemplar_select_criterion == 'high': selected_indices = train_prob_cur_cls_val.argsort()[:-( num_exemplars_cur_cls + 1):-1] # select the last 20 elif FLAGS.exemplar_select_criterion == 'low': selected_indices = train_prob_cur_cls_val.argsort( )[:num_exemplars_cur_cls] # select the last 20 elif FLAGS.exemplar_select_criterion == 'random': random_idx = range(len(train_prob_cur_cls_val)) np.random.shuffle(random_idx) selected_indices = random_idx[:num_exemplars_cur_cls] exemplars.append(train_x_cur_cls[selected_indices]) np_file_exemplars = os.path.join( exemplars_dir, 'exemplars_%d' % (category_idx_in_group + 1)) np.save(np_file_exemplars, exemplars) # Save the final model if not FLAGS.only_gen_no_cls: checkpoint_dir = os.path.join(result_folder, 'checkpoints') if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt')) sess.close()
def main(_): assert 0. < FLAGS.ratio < 1. pp.pprint(flags.FLAGS.__flags) order = [] with open('cifar-100_%s.txt' % FLAGS.order_file) as file_in: for line in file_in.readlines(): order.append(int(line)) order = np.array(order) assert FLAGS.mode == 'wgan-gp' FLAGS.result_dir_wgan = os.path.join(FLAGS.result_dir_wgan, 'nb_cl_%d' % FLAGS.nb_cl) import cifar100 NUM_CLASSES = 100 # number of classes NUM_TRAIN_SAMPLES_PER_CLASS = 500 # number of training samples per class NUM_TEST_SAMPLES_PER_CLASS = 100 # number of test samples per class train_images, train_labels, train_one_hot_labels, \ test_images, test_labels, test_one_hot_labels, \ raw_images_train, raw_images_test, pixel_mean = cifar100.load_data(order, mean_subtraction=True) # Number of all training samples NUM_TRAIN_SAMPLES_TOTAL = NUM_CLASSES * NUM_TRAIN_SAMPLES_PER_CLASS NUM_TEST_SAMPLES_TOTAL = NUM_CLASSES * NUM_TEST_SAMPLES_PER_CLASS def build_cnn(inputs, is_training): train_or_test = {True: 'train', False: 'test'} if FLAGS.network_arch == 'lenet': logits, end_points = utils_lenet.lenet( inputs, num_classes=NUM_CLASSES, is_training=is_training, use_dropout=FLAGS.use_dropout, scope=('LeNet-' + train_or_test[is_training])) elif FLAGS.network_arch == 'resnet': logits, end_points = utils_resnet.ResNet( inputs, train_or_test[is_training], num_outputs=NUM_CLASSES, alpha=0.0, n=FLAGS.num_resblocks, scope=('ResNet-' + train_or_test[is_training])) elif FLAGS.network_arch == 'nin': logits, end_points = utils_nin.nin( inputs, is_training=is_training, num_classes=NUM_CLASSES, scope=('NIN-' + train_or_test[is_training])) else: raise Exception('Invalid network architecture') return logits, end_points ''' Define variables ''' if not FLAGS.only_gen_no_cls: # Save all intermediate result in the result_folder method_name = '_'.join( os.path.basename(__file__).split('.')[0].split('_') [2:]) + '_ratio_%.1f' % FLAGS.ratio cls_func = '' if FLAGS.use_softmax else '_sigmoid' result_folder = os.path.join( FLAGS.result_dir, 'cifar-100_' + FLAGS.order_file, 'nb_cl_' + str(FLAGS.nb_cl), 'non_truncated' if FLAGS.no_truncate else 'truncated', FLAGS.network_arch + ('_%d' % FLAGS.num_resblocks if FLAGS.network_arch == 'resnet' else '') + cls_func + '_init_' + FLAGS.init_strategy, 'weight_decay_' + str(FLAGS.weight_decay), 'base_lr_' + str(FLAGS.base_lr), 'adam_lr_' + str(FLAGS.adam_lr)) if FLAGS.gan_finetune and 'gan' in method_name: result_folder = os.path.join( result_folder, method_name + '_finetune_' + FLAGS.pretrained_model_sub_dir.replace('/', '_')) else: result_folder = os.path.join(result_folder, method_name) # Add a "_run-i" suffix to the folder name if the folder exists if os.path.exists(result_folder): temp_i = 2 while True: result_folder_mod = result_folder + '_run-' + str(temp_i) if not os.path.exists(result_folder_mod): result_folder = result_folder_mod break temp_i += 1 os.makedirs(result_folder) print('Result folder: %s' % result_folder) graph_cls = tf.Graph() with graph_cls.as_default(): batch_images = tf.placeholder(tf.float32, shape=[None, 32, 32, 3]) batch = tf.Variable(0, trainable=False, name='LeNet-train/iteration') learning_rate = tf.placeholder(tf.float32, shape=[]) ''' Network output mask ''' mask_output = tf.placeholder(tf.bool, shape=[NUM_CLASSES]) ''' Old and new ground truth ''' one_hot_labels_truncated = tf.placeholder(tf.float32, shape=[None, None]) ''' Define the training network ''' train_logits, _ = build_cnn(batch_images, True) train_masked_logits = tf.gather(train_logits, tf.squeeze(tf.where(mask_output)), axis=1) # masking operation train_masked_logits = tf.cond( tf.equal(tf.rank(train_masked_logits), 1), lambda: tf.expand_dims(train_masked_logits, 1), lambda: train_masked_logits ) # convert to (N, 1) if the shape is (N,), otherwise softmax would output wrong values train_pred = tf.argmax(train_masked_logits, 1) train_ground_truth = tf.argmax(one_hot_labels_truncated, 1) correct_prediction = tf.equal(train_pred, train_ground_truth) train_accuracy = tf.reduce_mean( tf.cast(correct_prediction, tf.float32)) train_batch_weights = tf.placeholder(tf.float32, shape=[None]) reg_weights = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) regularization_loss = FLAGS.weight_decay * tf.add_n(reg_weights) ''' More Settings ''' if FLAGS.use_softmax: empirical_loss = tf.losses.softmax_cross_entropy( onehot_labels=one_hot_labels_truncated, logits=train_masked_logits, weights=train_batch_weights) else: empirical_loss = tf.losses.sigmoid_cross_entropy( multi_class_labels=one_hot_labels_truncated, logits=train_masked_logits, weights=train_batch_weights) loss = empirical_loss + regularization_loss if FLAGS.use_momentum: opt = tf.train.MomentumOptimizer( learning_rate, FLAGS.momentum).minimize(loss, global_step=batch) else: opt = tf.train.GradientDescentOptimizer( learning_rate).minimize(loss, global_step=batch) ''' Define the testing network ''' test_logits, _ = build_cnn(batch_images, False) test_masked_logits = tf.gather(test_logits, tf.squeeze(tf.where(mask_output)), axis=1) test_masked_logits = tf.cond( tf.equal(tf.rank(test_masked_logits), 1), lambda: tf.expand_dims(test_masked_logits, 1), lambda: test_masked_logits) test_masked_prob = tf.nn.softmax(test_masked_logits) test_pred = tf.argmax(test_masked_logits, 1) test_accuracy = tf.placeholder(tf.float32) ''' Copy network (define the copying op) ''' if FLAGS.network_arch == 'resnet': all_variables = tf.get_collection(tf.GraphKeys.WEIGHTS) else: all_variables = tf.trainable_variables() copy_ops = [ all_variables[ix + len(all_variables) // 2].assign(var.value()) for ix, var in enumerate(all_variables[0:len(all_variables) // 2]) ] ''' Init certain layers when new classes added ''' init_ops = tf.no_op() if FLAGS.init_strategy == 'all': init_ops = tf.global_variables_initializer() elif FLAGS.init_strategy == 'last': if FLAGS.network_arch == 'lenet': init_vars = [ var for var in tf.global_variables() if 'fc4' in var.name and 'train' in var.name ] elif FLAGS.network_arch == 'resnet': init_vars = [ var for var in tf.global_variables() if 'fc' in var.name and 'train' in var.name ] elif FLAGS.network_arch == 'nin': init_vars = [ var for var in tf.global_variables() if 'ccp6' in var.name and 'train' in var.name ] init_ops = tf.initialize_variables(init_vars) ''' Create session ''' config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config, graph=graph_cls) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() ''' Summary ''' train_loss_summary = tf.summary.scalar('train_loss', loss) train_acc_summary = tf.summary.scalar('train_accuracy', train_accuracy) test_acc_summary = tf.summary.scalar('test_accuracy', test_accuracy) summary_dir = os.path.join(result_folder, 'summary') if not os.path.exists(summary_dir): os.makedirs(summary_dir) train_summary_writer = tf.summary.FileWriter( os.path.join(summary_dir, 'train'), sess.graph) test_summary_writer = tf.summary.FileWriter( os.path.join(summary_dir, 'test')) iteration = 0 ''' Declaration of other vars ''' # Average accurary on seen classes aver_acc_over_time = dict() aver_acc_per_class_over_time = dict() conf_mat_over_time = dict() # Network mask mask_output_val = np.zeros([NUM_CLASSES], dtype=bool) mask_output_val_prev = np.zeros([NUM_CLASSES], dtype=bool) ''' Train generative model(DC-GAN) ''' run_config = tf.ConfigProto() run_config.gpu_options.allow_growth = True graph_gen = tf.Graph() sess_wgan = tf.Session(config=run_config, graph=graph_gen) wgan_obj = GAN(sess_wgan, graph_gen, dataset_name=('cifar-100_' + FLAGS.order_file), mode=FLAGS.mode, batch_size=FLAGS.batch_size, dim=FLAGS.dim, output_dim=FLAGS.output_dim, lambda_param=FLAGS.lambda_param, critic_iters=FLAGS.critic_iters, iters=FLAGS.iters, result_dir=FLAGS.result_dir_wgan, checkpoint_interval=FLAGS.gan_save_interval, adam_lr=FLAGS.adam_lr, adam_beta1=FLAGS.adam_beta1, adam_beta2=FLAGS.adam_beta2, finetune=FLAGS.gan_finetune, finetune_from=FLAGS.gan_finetune_from, pretrained_model_base_dir=FLAGS.pretrained_model_base_dir, pretrained_model_sub_dir=FLAGS.pretrained_model_sub_dir) ''' Class Incremental Learning ''' print('Starting from category ' + str(FLAGS.from_class_idx + 1) + ' to ' + str(FLAGS.to_class_idx + 1)) print('Adding %d categories every time' % FLAGS.nb_cl) assert (FLAGS.from_class_idx % FLAGS.nb_cl == 0) for category_idx in range(FLAGS.from_class_idx, FLAGS.to_class_idx + 1, FLAGS.nb_cl): to_category_idx = category_idx + FLAGS.nb_cl - 1 if FLAGS.nb_cl == 1: print('Adding Category ' + str(category_idx + 1)) else: print('Adding Category %d-%d' % (category_idx + 1, to_category_idx + 1)) # sess_idx starts from 0 sess_idx = category_idx / FLAGS.nb_cl # Training set(current category) train_indices_gan = [ idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if category_idx <= train_labels[idx] <= to_category_idx ] test_indices_cur_cls_gan = [ idx for idx in range(NUM_TEST_SAMPLES_TOTAL) if test_labels[idx] <= to_category_idx ] train_x_gan = raw_images_train[train_indices_gan, :] test_x_cur_cls_gan = raw_images_test[test_indices_cur_cls_gan, :] ''' Train generative model(W-GAN) ''' if wgan_obj.check_model(sess_idx): print(" [*] Model of Class %d exists. Skip the training process" % (sess_idx + 1)) else: print( " [*] Model of Class %d does not exist. Start the training process" % (sess_idx + 1)) for old_sess_idx in range(sess_idx): wgan_obj.load(old_sess_idx) gen_samples_x, _, _ = wgan_obj.test( NUM_TRAIN_SAMPLES_PER_CLASS * FLAGS.nb_cl) gen_samples_x = np.uint8(gen_samples_x) train_x_gan = np.concatenate((train_x_gan, gen_samples_x)) wgan_obj.train(train_x_gan, test_x_cur_cls_gan, sess_idx) ''' Train classification model ''' # No need to train the classifier if there is only one class if to_category_idx > 0 and not FLAGS.only_gen_no_cls: # Init certain layers sess.run(init_ops) # Training set train_indices = [ idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if category_idx <= train_labels[idx] <= to_category_idx ] train_x = raw_images_train[train_indices] if FLAGS.no_truncate: train_y_truncated = train_one_hot_labels[train_indices, :] mask_output_val[:] = True else: train_y_truncated = train_one_hot_labels[ train_indices, :to_category_idx + 1] mask_output_val[:to_category_idx + 1] = True ''' Generate samples of old classes ''' # Load old class model if sess_idx > 0: if not wgan_obj.load(sess_idx - 1)[0]: raise Exception( "[!] Train a model first, then run test mode") gen_samples_x = np.zeros((0, FLAGS.output_dim), dtype=int) for _ in range(category_idx): gen_samples_x_frac, _, _ = wgan_obj.test( NUM_TRAIN_SAMPLES_PER_CLASS) gen_samples_x = np.concatenate( (gen_samples_x, gen_samples_x_frac)) # import wgan.tflib.save_images # wgan.tflib.save_images.save_images(gen_samples_x[:128].reshape((128, 3, 32, 32)), # 'test.jpg') # get the output y gen_samples_y = np.zeros( (len(gen_samples_x), to_category_idx + 1)) if category_idx == 1: gen_samples_y[:, 0] = np.ones((len(gen_samples_x))) else: test_pred_val = [] mask_output_val_prev[:category_idx] = True for i in range(0, len(gen_samples_x), FLAGS.test_batch_size): gen_samples_x_batch = gen_samples_x[i:i + FLAGS. test_batch_size] test_pred_val_batch = sess.run( test_pred, feed_dict={ batch_images: cifar100.convert_images(gen_samples_x_batch, pixel_mean=pixel_mean), mask_output: mask_output_val_prev }) test_pred_val.extend(test_pred_val_batch) for i in range(len(gen_samples_x)): gen_samples_y[i, test_pred_val[i]] = 1 train_weights_val = np.concatenate( (np.ones(len(train_x)) * FLAGS.ratio, np.ones(len(gen_samples_x)) * (1 - FLAGS.ratio))) train_x = np.concatenate((train_x, gen_samples_x)) train_y_truncated = np.concatenate( (train_y_truncated, gen_samples_y)) else: train_weights_val = np.ones(len(train_x)) * FLAGS.ratio # # DEBUG: # train_indices = [idx for idx in range(NUM_SAMPLES_TOTAL) if train_labels[idx] <= category_idx] # train_x = raw_images_train[train_indices, :] # # Record the response of the new data using the old model(category_idx is consistent with the number of True in mask_output_val_prev) # train_y_truncated = train_one_hot_labels[train_indices, :category_idx + 1] # Training set # Convert the raw images from the data-files to floating-points. train_x = cifar100.convert_images(train_x, pixel_mean=pixel_mean) # Testing set test_indices = [ idx for idx in range(len(test_labels)) if test_labels[idx] <= to_category_idx ] test_x = test_images[test_indices] test_y = test_labels[test_indices] # Shuffle the indices and create mini-batch batch_indices_perm = [] epoch_idx = 0 lr = FLAGS.base_lr ''' Training with mixed data ''' while True: # Generate mini-batch if len(batch_indices_perm) == 0: if epoch_idx >= FLAGS.epochs_per_category: break if epoch_idx in lr_strat: lr /= FLAGS.lr_factor print("NEW LEARNING RATE: %f" % lr) epoch_idx = epoch_idx + 1 shuffled_indices = range(train_x.shape[0]) np.random.shuffle(shuffled_indices) for i in range(0, len(shuffled_indices), FLAGS.train_batch_size): batch_indices_perm.append( shuffled_indices[i:i + FLAGS.train_batch_size]) batch_indices_perm.reverse() popped_batch_idx = batch_indices_perm.pop() # Use the random index to select random images and labels. train_x_batch = train_x[popped_batch_idx, :, :, :] train_y_batch = [ train_y_truncated[k] for k in popped_batch_idx ] train_weights_batch_val = train_weights_val[popped_batch_idx] # Train train_loss_summary_str, train_acc_summary_str, train_accuracy_val, \ train_loss_val, train_empirical_loss_val, train_reg_loss_val, _ = sess.run( [train_loss_summary, train_acc_summary, train_accuracy, loss, empirical_loss, regularization_loss, opt], feed_dict={batch_images: train_x_batch, one_hot_labels_truncated: train_y_batch, mask_output: mask_output_val, learning_rate: lr, train_batch_weights: train_weights_batch_val}) # Test if iteration % FLAGS.test_interval == 0: sess.run(copy_ops) # Divide and conquer: to avoid allocating too much GPU memory test_pred_val = [] for i in range(0, len(test_x), FLAGS.test_batch_size): test_x_batch = test_x[i:i + FLAGS.test_batch_size] test_pred_val_batch = sess.run(test_pred, feed_dict={ batch_images: test_x_batch, mask_output: mask_output_val }) test_pred_val.extend(test_pred_val_batch) test_accuracy_val = 1. * np.sum( np.equal(test_pred_val, test_y)) / (len(test_pred_val)) test_per_class_accuracy_val = np.diag( confusion_matrix(test_y, test_pred_val)) test_acc_summary_str = sess.run( test_acc_summary, feed_dict={test_accuracy: test_accuracy_val}) test_summary_writer.add_summary(test_acc_summary_str, iteration) print("TEST: step %d, lr %.4f, accuracy %g" % (iteration, lr, test_accuracy_val)) print("PER CLASS ACCURACY: " + " | ".join( str(o) + '%' for o in test_per_class_accuracy_val)) # Print the training logs if iteration % FLAGS.display_interval == 0: train_summary_writer.add_summary(train_loss_summary_str, iteration) train_summary_writer.add_summary(train_acc_summary_str, iteration) print( "TRAIN: epoch %d, step %d, lr %.4f, accuracy %g, loss %g, empirical %g, reg %g" % (epoch_idx, iteration, lr, train_accuracy_val, train_loss_val, train_empirical_loss_val, train_reg_loss_val)) iteration = iteration + 1 ''' Final test(before the next class is added) ''' sess.run(copy_ops) # Divide and conquer: to avoid allocating too much GPU memory test_pred_val = [] for i in range(0, len(test_x), FLAGS.test_batch_size): test_x_batch = test_x[i:i + FLAGS.test_batch_size] test_pred_val_batch = sess.run(test_pred, feed_dict={ batch_images: test_x_batch, mask_output: mask_output_val }) test_pred_val.extend(test_pred_val_batch) test_accuracy_val = 1. * np.sum(np.equal( test_pred_val, test_y)) / (len(test_pred_val)) conf_mat = confusion_matrix(test_y, test_pred_val) test_per_class_accuracy_val = np.diag(conf_mat) # Record and save the cumulative accuracy aver_acc_over_time[to_category_idx] = test_accuracy_val aver_acc_per_class_over_time[ to_category_idx] = test_per_class_accuracy_val conf_mat_over_time[to_category_idx] = conf_mat dump_obj = dict() dump_obj['flags'] = flags.FLAGS.__flags dump_obj['aver_acc_over_time'] = aver_acc_over_time dump_obj[ 'aver_acc_per_class_over_time'] = aver_acc_per_class_over_time dump_obj['conf_mat_over_time'] = conf_mat_over_time np_file_result = os.path.join(result_folder, 'acc_over_time.pkl') with open(np_file_result, 'wb') as file: pickle.dump(dump_obj, file) visualize_result.vis(np_file_result) # Save the final model if not FLAGS.only_gen_no_cls: checkpoint_dir = os.path.join(result_folder, 'checkpoints') if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt')) sess.close()
import os from cifar100 import load_data import PIL.Image as Image if __name__ == '__main__' : outDir = './CIFAR-100/' train, test, labels = load_data() labels = labels['fine_label_names'] def writeData (outDir, dir, data, labels) : # setup the train directories subDir = os.path.join(outDir, dir) if not os.path.exists(subDir) : os.makedirs(subDir) # write the label directories counts = [0] * len(labels) for im, ii in zip(data[0], data[1]) : # create the directory labelDir = os.path.join(subDir, str(labels[ii])) if not os.path.exists(labelDir) : os.makedirs(labelDir) # write the image to the directory imPath = os.path.join(labelDir, str(counts[ii]) + '.tif') Image.merge('RGB', (Image.fromarray(im[0]), Image.fromarray(im[1]), Image.fromarray(im[2]))).save(imPath) counts[ii] += 1 # setup the train directories