Example #1
0
    def write_pcs(path, params, extension, N_tm, mode=0):

        spikes = numpy.load(os.path.join(output_path, 'spike_times.npy'))
        labels = numpy.load(os.path.join(output_path, 'spike_templates.npy'))
        max_loc_channel = get_max_loc_channel(params, extension)
        nb_features = params.getint('whitening', 'output_dim')
        sign_peaks = params.get('detection', 'peaks')
        nodes, edges = get_nodes_and_edges(params)
        N_total = params.getint('data', 'N_total')
        has_support = test_if_support(params, extension)
        if has_support:
            supports = io.load_data(params, 'supports', extension)
        else:
            inv_nodes = numpy.zeros(N_total, dtype=numpy.int32)
            inv_nodes[nodes] = numpy.arange(len(nodes))

        if export_all:
            nb_templates = N_tm + N_e
        else:
            nb_templates = N_tm

        pc_features_ind = numpy.zeros((nb_templates, max_loc_channel),
                                      dtype=numpy.int32)
        best_elec = io.load_data(params, 'electrodes', extension)
        if export_all:
            best_elec = numpy.concatenate((best_elec, numpy.arange(N_e)))

        if has_support:
            for count, support in enumerate(supports):
                nb_loc = numpy.sum(support)
                pc_features_ind[count, numpy.arange(nb_loc)] = numpy.where(
                    support == True)[0]
        else:
            for count, elec in enumerate(best_elec):
                nb_loc = len(edges[nodes[elec]])
                pc_features_ind[count, numpy.arange(nb_loc)] = inv_nodes[edges[
                    nodes[elec]]]

        if sign_peaks in ['negative', 'both']:
            basis_proj, basis_rec = io.load_data(params, 'basis')
        elif sign_peaks in ['positive']:
            basis_proj, basis_rec = io.load_data(params, 'basis-pos')

        to_process = numpy.arange(comm.rank, nb_templates, comm.size)

        all_offsets = numpy.zeros(nb_templates, dtype=numpy.int32)
        for target in range(nb_templates):
            if mode == 0:
                all_offsets[target] = len(numpy.where(labels == target)[0])
            elif mode == 1:
                all_offsets[target] = min(
                    500, len(numpy.where(labels == target)[0]))

        all_paddings = numpy.concatenate(([0], numpy.cumsum(all_offsets)))
        total_pcs = numpy.sum(all_offsets)

        pc_file = os.path.join(output_path, 'pc_features.npy')
        pc_file_ids = os.path.join(output_path, 'pc_feature_spike_ids.npy')

        from numpy.lib.format import open_memmap

        if comm.rank == 0:
            pc_features = open_memmap(pc_file,
                                      shape=(total_pcs, nb_features,
                                             max_loc_channel),
                                      dtype=numpy.float32,
                                      mode='w+')
            if mode == 1:
                pc_ids = open_memmap(pc_file_ids,
                                     shape=(total_pcs, ),
                                     dtype=numpy.int32,
                                     mode='w+')

        comm.Barrier()
        pc_features = open_memmap(pc_file, mode='r+')
        if mode == 1:
            pc_ids = open_memmap(pc_file_ids, mode='r+')

        to_explore = list(range(comm.rank, nb_templates, comm.size))

        if comm.rank == 0:
            to_explore = get_tqdm_progressbar(params, to_explore)

        all_idx = numpy.zeros(0, dtype=numpy.int32)
        for gcount, target in enumerate(to_explore):

            count = all_paddings[target]

            if mode == 1:
                idx = numpy.random.permutation(
                    numpy.where(labels == target)[0])[:500]
                pc_ids[count:count + len(idx)] = idx
            elif mode == 0:
                idx = numpy.where(labels == target)[0]

            elec = best_elec[target]

            if has_support:
                if target >= len(supports):
                    indices = [target - N_tm]
                else:
                    indices = numpy.where(supports[target])[0]
            else:
                indices = inv_nodes[edges[nodes[elec]]]
            labels_i = target * numpy.ones(len(idx))
            times_i = numpy.take(spikes, idx).astype(numpy.int64)
            sub_data = io.get_stas(params,
                                   times_i,
                                   labels_i,
                                   elec,
                                   neighs=indices,
                                   nodes=nodes,
                                   auto_align=False)

            pcs = numpy.dot(sub_data, basis_proj)
            pcs = numpy.swapaxes(pcs, 1, 2)
            if mode == 0:
                pc_features[idx, :, :len(indices)] = pcs
            elif mode == 1:
                pc_features[count:count + len(idx), :, :len(indices)] = pcs

        comm.Barrier()

        if comm.rank == 0:
            numpy.save(os.path.join(output_path, 'pc_feature_ind'),
                       pc_features_ind.astype(
                           numpy.uint32))  # n_templates, n_loc_chan
times = clusters_data['times'][electrode]
clusters = clusters_data['clusters'][electrode]
assert times.shape == clusters.shape, (times.shape, clusters.shape)
selection = (clusters == local_cluster)
times = times[selection]
clusters = clusters[selection]
if times.size > nb_snippets:
    indices = np.random.choice(times.size, size=nb_snippets)
    indices = np.sort(indices)
    times = times[indices]
    clusters = clusters[indices]
nodes, _ = get_nodes_and_edges(params)
inv_nodes = np.zeros(nb_electrodes, dtype=np.int)
inv_nodes[nodes] = np.arange(len(nodes))
indices = inv_nodes[nodes]
snippets = get_stas(params, times, clusters, electrode, indices, nodes=nodes)
snippets = np.transpose(snippets, axes=(0, 2, 1))
assert snippets.shape == (nb_snippets, nb_time_steps, nb_channels), \
    (snippets.shape, nb_snippets, nb_time_steps, nb_channels)

# Load template.
template = load_template(args.template_id, params, extension='')
assert template.shape == (nb_time_steps, nb_channels)

# Compute the scalar products.
snippets_ = np.reshape(snippets, (nb_snippets, nb_channels * nb_time_steps))
template_ = np.reshape(template, (nb_channels * nb_time_steps, 1))
# print(snippets_.shape)
# print(template_.shape)
scalar_products_ = snippets_.dot(template_)
scalar_products = np.reshape(scalar_products_, (nb_snippets, ))
Example #3
0
    def write_templates(path, params, extension):

        max_loc_channel = get_max_loc_channel(params, extension)
        templates = io.load_data(params, 'templates', extension)
        N_tm = templates.shape[1] // 2
        nodes, edges = get_nodes_and_edges(params)

        if sparse_export:
            n_channels_max = 0
            for t in range(N_tm):
                data = numpy.sum(
                    numpy.sum(templates[:, t].toarray().reshape(N_e, N_t), 1)
                    != 0)
                if data > n_channels_max:
                    n_channels_max = data
        else:
            n_channels_max = N_e

        if export_all:
            to_write_sparse = numpy.zeros((N_tm + N_e, N_t, n_channels_max),
                                          dtype=numpy.float32)
            mapping_sparse = -1 * numpy.ones(
                (N_tm + N_e, n_channels_max), dtype=numpy.int32)
        else:
            to_write_sparse = numpy.zeros((N_tm, N_t, n_channels_max),
                                          dtype=numpy.float32)
            mapping_sparse = -1 * numpy.ones(
                (N_tm, n_channels_max), dtype=numpy.int32)

        has_purity = test_if_purity(params, extension)
        if has_purity:
            purity = io.load_data(params, 'purity', extension)
            f = open(os.path.join(output_path, 'cluster_purity.tsv'), 'w')
            f.write('cluster_id\tpurity\n')
            for i in range(N_tm):
                f.write('%d\t%g\n' % (i, purity[i]))
            f.close()

        for t in range(N_tm):
            tmp = templates[:, t].toarray().reshape(N_e, N_t).T
            x, y = tmp.nonzero()
            nb_loc = len(numpy.unique(y))

            if sparse_export:
                all_positions = numpy.zeros(y.max() + 1, dtype=numpy.int32)
                all_positions[numpy.unique(y)] = numpy.arange(
                    nb_loc, dtype=numpy.int32)
                pos = all_positions[y]
                to_write_sparse[t, x, pos] = tmp[x, y]
                mapping_sparse[t, numpy.arange(nb_loc)] = numpy.unique(y)
            else:
                pos = y
                to_write_sparse[t, x, pos] = tmp[x, y]

        if export_all:
            garbage = io.load_data(params, 'garbage', extension)
            for t in range(N_tm, N_tm + N_e):
                elec = t - N_tm
                spikes = garbage['gspikes'].pop('elec_%d' % elec).astype(
                    numpy.int64)
                spikes = numpy.random.permutation(spikes)[:100]
                mapping_sparse[t, 0] = t - N_tm
                waveform = io.get_stas(params,
                                       times_i=spikes,
                                       labels_i=np.ones(len(spikes)),
                                       src=elec,
                                       neighs=[elec],
                                       nodes=nodes,
                                       mean_mode=True)

                nb_loc = 1

                if sparse_export:
                    to_write_sparse[t, :, 0] = waveform
                else:
                    to_write_sparse[t, :, elec] = waveform

        numpy.save(os.path.join(output_path, 'templates'), to_write_sparse)

        if sparse_export:
            numpy.save(os.path.join(output_path, 'template_ind'),
                       mapping_sparse)

        return N_tm
Example #4
0
    def write_pcs(path, params, comm, extension, mode=0):

        spikes = numpy.load(os.path.join(output_path, 'spike_times.npy'))
        labels = numpy.load(os.path.join(output_path, 'spike_templates.npy'))
        max_loc_channel = get_max_loc_channel(params)
        nb_features = params.getint('whitening', 'output_dim')
        nodes, edges = get_nodes_and_edges(params)
        N_total = params.getint('data', 'N_total')
        templates = load_data(params, 'templates', extension)
        N_tm = templates.shape[1] // 2
        pc_features_ind = numpy.zeros((N_tm, max_loc_channel),
                                      dtype=numpy.int32)
        clusters = load_data(params, 'clusters', extension)
        best_elec = clusters['electrodes']
        inv_nodes = numpy.zeros(N_total, dtype=numpy.int32)
        inv_nodes[nodes] = numpy.argsort(nodes)

        for count, elec in enumerate(best_elec):
            nb_loc = len(edges[nodes[elec]])
            pc_features_ind[count, numpy.arange(nb_loc)] = inv_nodes[edges[
                nodes[elec]]]

        basis_proj, basis_rec = load_data(params, 'basis')

        to_process = numpy.arange(comm.rank, N_tm, comm.size)

        all_offsets = numpy.zeros(N_tm, dtype=numpy.int32)
        for target in xrange(N_tm):
            if mode == 0:
                all_offsets[target] = len(numpy.where(labels == target)[0])
            elif mode == 1:
                all_offsets[target] = min(
                    500, len(numpy.where(labels == target)[0]))

        all_paddings = numpy.concatenate(([0], numpy.cumsum(all_offsets)))
        total_pcs = numpy.sum(all_offsets)

        pc_file = os.path.join(output_path, 'pc_features.npy')
        pc_file_ids = os.path.join(output_path, 'pc_feature_spike_ids.npy')

        from numpy.lib.format import open_memmap

        if comm.rank == 0:
            pc_features = open_memmap(pc_file,
                                      shape=(total_pcs, nb_features,
                                             max_loc_channel),
                                      dtype=numpy.float32,
                                      mode='w+')
            if mode == 1:
                pc_ids = open_memmap(pc_file_ids,
                                     shape=(total_pcs, ),
                                     dtype=numpy.int32,
                                     mode='w+')

        comm.Barrier()
        pc_features = open_memmap(pc_file, mode='r+')
        if mode == 1:
            pc_ids = open_memmap(pc_file_ids, mode='r+')

        if comm.rank == 0:
            pbar = get_progressbar(len(to_process))

        all_idx = numpy.zeros(0, dtype=numpy.int32)
        for gcount, target in enumerate(to_process):

            count = all_paddings[target]

            if mode == 1:
                idx = numpy.random.permutation(
                    numpy.where(labels == target)[0])[:500]
                pc_ids[count:count + len(idx)] = idx
            elif mode == 0:
                idx = numpy.where(labels == target)[0]

            elec = best_elec[target]
            indices = inv_nodes[edges[nodes[elec]]]
            labels_i = target * numpy.ones(len(idx))
            times_i = numpy.take(spikes, idx)
            sub_data = get_stas(params,
                                times_i,
                                labels_i,
                                elec,
                                neighs=indices,
                                nodes=nodes,
                                auto_align=False)
            pcs = numpy.dot(sub_data, basis_proj)
            pcs = numpy.swapaxes(pcs, 1, 2)
            if mode == 0:
                pc_features[idx, :, :len(indices)] = pcs
            elif mode == 1:
                pc_features[count:count + len(idx), :, :len(indices)] = pcs

            if comm.rank == 0:
                pbar.update(gcount)

        if comm.rank == 0:
            pbar.finish()

        comm.Barrier()

        if comm.rank == 0:
            numpy.save(os.path.join(output_path, 'pc_feature_ind'),
                       pc_features_ind.astype(
                           numpy.uint32))  #n_templates, n_loc_chan