def write_pcs(path, params, extension, N_tm, mode=0): spikes = numpy.load(os.path.join(output_path, 'spike_times.npy')) labels = numpy.load(os.path.join(output_path, 'spike_templates.npy')) max_loc_channel = get_max_loc_channel(params, extension) nb_features = params.getint('whitening', 'output_dim') sign_peaks = params.get('detection', 'peaks') nodes, edges = get_nodes_and_edges(params) N_total = params.getint('data', 'N_total') has_support = test_if_support(params, extension) if has_support: supports = io.load_data(params, 'supports', extension) else: inv_nodes = numpy.zeros(N_total, dtype=numpy.int32) inv_nodes[nodes] = numpy.arange(len(nodes)) if export_all: nb_templates = N_tm + N_e else: nb_templates = N_tm pc_features_ind = numpy.zeros((nb_templates, max_loc_channel), dtype=numpy.int32) best_elec = io.load_data(params, 'electrodes', extension) if export_all: best_elec = numpy.concatenate((best_elec, numpy.arange(N_e))) if has_support: for count, support in enumerate(supports): nb_loc = numpy.sum(support) pc_features_ind[count, numpy.arange(nb_loc)] = numpy.where( support == True)[0] else: for count, elec in enumerate(best_elec): nb_loc = len(edges[nodes[elec]]) pc_features_ind[count, numpy.arange(nb_loc)] = inv_nodes[edges[ nodes[elec]]] if sign_peaks in ['negative', 'both']: basis_proj, basis_rec = io.load_data(params, 'basis') elif sign_peaks in ['positive']: basis_proj, basis_rec = io.load_data(params, 'basis-pos') to_process = numpy.arange(comm.rank, nb_templates, comm.size) all_offsets = numpy.zeros(nb_templates, dtype=numpy.int32) for target in range(nb_templates): if mode == 0: all_offsets[target] = len(numpy.where(labels == target)[0]) elif mode == 1: all_offsets[target] = min( 500, len(numpy.where(labels == target)[0])) all_paddings = numpy.concatenate(([0], numpy.cumsum(all_offsets))) total_pcs = numpy.sum(all_offsets) pc_file = os.path.join(output_path, 'pc_features.npy') pc_file_ids = os.path.join(output_path, 'pc_feature_spike_ids.npy') from numpy.lib.format import open_memmap if comm.rank == 0: pc_features = open_memmap(pc_file, shape=(total_pcs, nb_features, max_loc_channel), dtype=numpy.float32, mode='w+') if mode == 1: pc_ids = open_memmap(pc_file_ids, shape=(total_pcs, ), dtype=numpy.int32, mode='w+') comm.Barrier() pc_features = open_memmap(pc_file, mode='r+') if mode == 1: pc_ids = open_memmap(pc_file_ids, mode='r+') to_explore = list(range(comm.rank, nb_templates, comm.size)) if comm.rank == 0: to_explore = get_tqdm_progressbar(params, to_explore) all_idx = numpy.zeros(0, dtype=numpy.int32) for gcount, target in enumerate(to_explore): count = all_paddings[target] if mode == 1: idx = numpy.random.permutation( numpy.where(labels == target)[0])[:500] pc_ids[count:count + len(idx)] = idx elif mode == 0: idx = numpy.where(labels == target)[0] elec = best_elec[target] if has_support: if target >= len(supports): indices = [target - N_tm] else: indices = numpy.where(supports[target])[0] else: indices = inv_nodes[edges[nodes[elec]]] labels_i = target * numpy.ones(len(idx)) times_i = numpy.take(spikes, idx).astype(numpy.int64) sub_data = io.get_stas(params, times_i, labels_i, elec, neighs=indices, nodes=nodes, auto_align=False) pcs = numpy.dot(sub_data, basis_proj) pcs = numpy.swapaxes(pcs, 1, 2) if mode == 0: pc_features[idx, :, :len(indices)] = pcs elif mode == 1: pc_features[count:count + len(idx), :, :len(indices)] = pcs comm.Barrier() if comm.rank == 0: numpy.save(os.path.join(output_path, 'pc_feature_ind'), pc_features_ind.astype( numpy.uint32)) # n_templates, n_loc_chan
times = clusters_data['times'][electrode] clusters = clusters_data['clusters'][electrode] assert times.shape == clusters.shape, (times.shape, clusters.shape) selection = (clusters == local_cluster) times = times[selection] clusters = clusters[selection] if times.size > nb_snippets: indices = np.random.choice(times.size, size=nb_snippets) indices = np.sort(indices) times = times[indices] clusters = clusters[indices] nodes, _ = get_nodes_and_edges(params) inv_nodes = np.zeros(nb_electrodes, dtype=np.int) inv_nodes[nodes] = np.arange(len(nodes)) indices = inv_nodes[nodes] snippets = get_stas(params, times, clusters, electrode, indices, nodes=nodes) snippets = np.transpose(snippets, axes=(0, 2, 1)) assert snippets.shape == (nb_snippets, nb_time_steps, nb_channels), \ (snippets.shape, nb_snippets, nb_time_steps, nb_channels) # Load template. template = load_template(args.template_id, params, extension='') assert template.shape == (nb_time_steps, nb_channels) # Compute the scalar products. snippets_ = np.reshape(snippets, (nb_snippets, nb_channels * nb_time_steps)) template_ = np.reshape(template, (nb_channels * nb_time_steps, 1)) # print(snippets_.shape) # print(template_.shape) scalar_products_ = snippets_.dot(template_) scalar_products = np.reshape(scalar_products_, (nb_snippets, ))
def write_templates(path, params, extension): max_loc_channel = get_max_loc_channel(params, extension) templates = io.load_data(params, 'templates', extension) N_tm = templates.shape[1] // 2 nodes, edges = get_nodes_and_edges(params) if sparse_export: n_channels_max = 0 for t in range(N_tm): data = numpy.sum( numpy.sum(templates[:, t].toarray().reshape(N_e, N_t), 1) != 0) if data > n_channels_max: n_channels_max = data else: n_channels_max = N_e if export_all: to_write_sparse = numpy.zeros((N_tm + N_e, N_t, n_channels_max), dtype=numpy.float32) mapping_sparse = -1 * numpy.ones( (N_tm + N_e, n_channels_max), dtype=numpy.int32) else: to_write_sparse = numpy.zeros((N_tm, N_t, n_channels_max), dtype=numpy.float32) mapping_sparse = -1 * numpy.ones( (N_tm, n_channels_max), dtype=numpy.int32) has_purity = test_if_purity(params, extension) if has_purity: purity = io.load_data(params, 'purity', extension) f = open(os.path.join(output_path, 'cluster_purity.tsv'), 'w') f.write('cluster_id\tpurity\n') for i in range(N_tm): f.write('%d\t%g\n' % (i, purity[i])) f.close() for t in range(N_tm): tmp = templates[:, t].toarray().reshape(N_e, N_t).T x, y = tmp.nonzero() nb_loc = len(numpy.unique(y)) if sparse_export: all_positions = numpy.zeros(y.max() + 1, dtype=numpy.int32) all_positions[numpy.unique(y)] = numpy.arange( nb_loc, dtype=numpy.int32) pos = all_positions[y] to_write_sparse[t, x, pos] = tmp[x, y] mapping_sparse[t, numpy.arange(nb_loc)] = numpy.unique(y) else: pos = y to_write_sparse[t, x, pos] = tmp[x, y] if export_all: garbage = io.load_data(params, 'garbage', extension) for t in range(N_tm, N_tm + N_e): elec = t - N_tm spikes = garbage['gspikes'].pop('elec_%d' % elec).astype( numpy.int64) spikes = numpy.random.permutation(spikes)[:100] mapping_sparse[t, 0] = t - N_tm waveform = io.get_stas(params, times_i=spikes, labels_i=np.ones(len(spikes)), src=elec, neighs=[elec], nodes=nodes, mean_mode=True) nb_loc = 1 if sparse_export: to_write_sparse[t, :, 0] = waveform else: to_write_sparse[t, :, elec] = waveform numpy.save(os.path.join(output_path, 'templates'), to_write_sparse) if sparse_export: numpy.save(os.path.join(output_path, 'template_ind'), mapping_sparse) return N_tm
def write_pcs(path, params, comm, extension, mode=0): spikes = numpy.load(os.path.join(output_path, 'spike_times.npy')) labels = numpy.load(os.path.join(output_path, 'spike_templates.npy')) max_loc_channel = get_max_loc_channel(params) nb_features = params.getint('whitening', 'output_dim') nodes, edges = get_nodes_and_edges(params) N_total = params.getint('data', 'N_total') templates = load_data(params, 'templates', extension) N_tm = templates.shape[1] // 2 pc_features_ind = numpy.zeros((N_tm, max_loc_channel), dtype=numpy.int32) clusters = load_data(params, 'clusters', extension) best_elec = clusters['electrodes'] inv_nodes = numpy.zeros(N_total, dtype=numpy.int32) inv_nodes[nodes] = numpy.argsort(nodes) for count, elec in enumerate(best_elec): nb_loc = len(edges[nodes[elec]]) pc_features_ind[count, numpy.arange(nb_loc)] = inv_nodes[edges[ nodes[elec]]] basis_proj, basis_rec = load_data(params, 'basis') to_process = numpy.arange(comm.rank, N_tm, comm.size) all_offsets = numpy.zeros(N_tm, dtype=numpy.int32) for target in xrange(N_tm): if mode == 0: all_offsets[target] = len(numpy.where(labels == target)[0]) elif mode == 1: all_offsets[target] = min( 500, len(numpy.where(labels == target)[0])) all_paddings = numpy.concatenate(([0], numpy.cumsum(all_offsets))) total_pcs = numpy.sum(all_offsets) pc_file = os.path.join(output_path, 'pc_features.npy') pc_file_ids = os.path.join(output_path, 'pc_feature_spike_ids.npy') from numpy.lib.format import open_memmap if comm.rank == 0: pc_features = open_memmap(pc_file, shape=(total_pcs, nb_features, max_loc_channel), dtype=numpy.float32, mode='w+') if mode == 1: pc_ids = open_memmap(pc_file_ids, shape=(total_pcs, ), dtype=numpy.int32, mode='w+') comm.Barrier() pc_features = open_memmap(pc_file, mode='r+') if mode == 1: pc_ids = open_memmap(pc_file_ids, mode='r+') if comm.rank == 0: pbar = get_progressbar(len(to_process)) all_idx = numpy.zeros(0, dtype=numpy.int32) for gcount, target in enumerate(to_process): count = all_paddings[target] if mode == 1: idx = numpy.random.permutation( numpy.where(labels == target)[0])[:500] pc_ids[count:count + len(idx)] = idx elif mode == 0: idx = numpy.where(labels == target)[0] elec = best_elec[target] indices = inv_nodes[edges[nodes[elec]]] labels_i = target * numpy.ones(len(idx)) times_i = numpy.take(spikes, idx) sub_data = get_stas(params, times_i, labels_i, elec, neighs=indices, nodes=nodes, auto_align=False) pcs = numpy.dot(sub_data, basis_proj) pcs = numpy.swapaxes(pcs, 1, 2) if mode == 0: pc_features[idx, :, :len(indices)] = pcs elif mode == 1: pc_features[count:count + len(idx), :, :len(indices)] = pcs if comm.rank == 0: pbar.update(gcount) if comm.rank == 0: pbar.finish() comm.Barrier() if comm.rank == 0: numpy.save(os.path.join(output_path, 'pc_feature_ind'), pc_features_ind.astype( numpy.uint32)) #n_templates, n_loc_chan