Example #1
0
def test_benchmark_2q_xeb_fidelities():
    q0, q1 = cirq.LineQubit.range(2)
    circuits = [
        rqcg.random_rotations_between_two_qubit_circuit(
            q0,
            q1,
            depth=50,
            two_qubit_op_factory=lambda a, b, _: SQRT_ISWAP(a, b),
            seed=52) for _ in range(2)
    ]
    cycle_depths = np.arange(3, 50, 9)

    sampled_df = sample_2q_xeb_circuits(sampler=cirq.Simulator(seed=53),
                                        circuits=circuits,
                                        cycle_depths=cycle_depths)
    fid_df = benchmark_2q_xeb_fidelities(sampled_df, circuits, cycle_depths)
    assert len(fid_df) == len(cycle_depths)
    for _, row in fid_df.iterrows():
        assert row['cycle_depth'] in cycle_depths
        assert row['fidelity'] > 0.98

    fit_df = fit_exponential_decays(fid_df)
    for _, row in fit_df.iterrows():
        assert list(row['cycle_depths']) == list(cycle_depths)
        assert len(row['fidelities']) == len(cycle_depths)
Example #2
0
def test_parameterize_phased_fsim_circuit():
    q0, q1 = cirq.LineQubit.range(2)
    circuit = rqcg.random_rotations_between_two_qubit_circuit(
        q0, q1, depth=3, two_qubit_op_factory=lambda a, b, _: SQRT_ISWAP(a, b), seed=52
    )

    p_circuit = parameterize_phased_fsim_circuit(circuit, SqrtISwapXEBOptions())
    cirq.testing.assert_has_diagram(
        p_circuit,
        """\
0                                    1
│                                    │
Y^0.5                                X^0.5
│                                    │
PhFSim(theta, zeta, chi, gamma, phi)─PhFSim(theta, zeta, chi, gamma, phi)
│                                    │
PhX(0.25)^0.5                        Y^0.5
│                                    │
PhFSim(theta, zeta, chi, gamma, phi)─PhFSim(theta, zeta, chi, gamma, phi)
│                                    │
Y^0.5                                X^0.5
│                                    │
PhFSim(theta, zeta, chi, gamma, phi)─PhFSim(theta, zeta, chi, gamma, phi)
│                                    │
X^0.5                                PhX(0.25)^0.5
│                                    │
    """,
        transpose=True,
    )
Example #3
0
def circuits_cycle_depths_sampled_df():
    q0, q1 = cirq.LineQubit.range(2)
    circuits = [
        rqcg.random_rotations_between_two_qubit_circuit(
            q0, q1, depth=50, two_qubit_op_factory=lambda a, b, _: SQRT_ISWAP(a, b), seed=52
        )
        for _ in range(2)
    ]
    cycle_depths = np.arange(10, 40 + 1, 10)

    sampled_df = sample_2q_xeb_circuits(
        sampler=cirq.Simulator(seed=53), circuits=circuits, cycle_depths=cycle_depths
    )
    return circuits, cycle_depths, sampled_df
Example #4
0
def test_characterize_phased_fsim_parameters_with_xeb():
    q0, q1 = cirq.LineQubit.range(2)
    rs = np.random.RandomState(52)
    circuits = [
        rqcg.random_rotations_between_two_qubit_circuit(
            q0,
            q1,
            depth=20,
            two_qubit_op_factory=lambda a, b, _: SQRT_ISWAP(a, b),
            seed=rs,
        ) for _ in range(2)
    ]
    cycle_depths = np.arange(3, 20, 6)
    sampled_df = sample_2q_xeb_circuits(
        sampler=cirq.Simulator(seed=rs),
        circuits=circuits,
        cycle_depths=cycle_depths,
        progress_bar=None,
    )
    # only optimize theta so it goes faster.
    options = SqrtISwapXEBOptions(
        characterize_theta=True,
        characterize_gamma=False,
        characterize_chi=False,
        characterize_zeta=False,
        characterize_phi=False,
    )
    p_circuits = [
        parameterize_circuit(circuit, options) for circuit in circuits
    ]
    with multiprocessing.Pool() as pool:
        result = characterize_phased_fsim_parameters_with_xeb(
            sampled_df=sampled_df,
            parameterized_circuits=p_circuits,
            cycle_depths=cycle_depths,
            options=options,
            # speed up with looser tolerances:
            fatol=1e-2,
            xatol=1e-2,
            pool=pool,
        )
    opt_res = result.optimization_results[(q0, q1)]
    assert np.abs(opt_res.x[0] + np.pi / 4) < 0.1
    assert np.abs(opt_res.fun) < 0.1  # noiseless simulator

    assert len(result.fidelities_df) == len(cycle_depths)
    assert np.all(result.fidelities_df['fidelity'] > 0.95)