Example #1
0
        def _apply_mixture_(self, args: cirq.ApplyMixtureArgs):
            zero_left = cirq.slice_for_qubits_equal_to(args.left_axes, 0)
            one_left = cirq.slice_for_qubits_equal_to(args.left_axes, 1)
            zero_right = cirq.slice_for_qubits_equal_to(
                cast(Tuple[int], args.right_axes), 0)
            one_right = cirq.slice_for_qubits_equal_to(
                cast(Tuple[int], args.right_axes), 1)
            args.out_buffer[:] = 0
            np.copyto(dst=args.auxiliary_buffer0, src=args.target_tensor)
            for kraus_op in [
                    np.sqrt(0.5) * np.eye(2, dtype=np.complex128),
                    np.sqrt(0.5) * x
            ]:
                np.copyto(dst=args.target_tensor, src=args.auxiliary_buffer0)
                cirq.apply_matrix_to_slices(args.target_tensor,
                                            kraus_op, [zero_left, one_left],
                                            out=args.auxiliary_buffer1)

                cirq.apply_matrix_to_slices(
                    args.auxiliary_buffer1,
                    np.conjugate(kraus_op),
                    [zero_right, one_right],
                    out=args.target_tensor,
                )
                args.out_buffer += args.target_tensor
            return args.out_buffer
Example #2
0
    def _apply_unitary_(self,
                        args: cirq.ApplyUnitaryArgs) -> Optional[np.ndarray]:
        if cirq.is_parameterized(self):
            return NotImplemented

        am, bm, cm = (la.expm(-1j * self.exponent *
                              np.array([[0, w], [w.conjugate(), 0]]))
                      for w in self.weights)

        a1 = args.subspace_index(0b1001)
        b1 = args.subspace_index(0b0101)
        c1 = args.subspace_index(0b0011)

        a2 = args.subspace_index(0b0110)
        b2 = args.subspace_index(0b1010)
        c2 = args.subspace_index(0b1100)

        cirq.apply_matrix_to_slices(args.target_tensor,
                                    am,
                                    slices=[a1, a2],
                                    out=args.available_buffer)
        cirq.apply_matrix_to_slices(args.available_buffer,
                                    bm,
                                    slices=[b1, b2],
                                    out=args.target_tensor)
        return cirq.apply_matrix_to_slices(args.target_tensor,
                                           cm,
                                           slices=[c1, c2],
                                           out=args.available_buffer)
    def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs
                        ) -> Optional[np.ndarray]:
        if cirq.is_parameterized(self):
            return None
        am = cirq.unitary(cirq.Rx(-np.pi * self.exponent * self.weights[0]))
        bm = cirq.unitary(cirq.Rx(-np.pi * self.exponent * self.weights[1]))
        cm = cirq.unitary(cirq.Rx(-np.pi * self.exponent * self.weights[2]))

        a1 = args.subspace_index(0b1001)
        b1 = args.subspace_index(0b0101)
        c1 = args.subspace_index(0b0011)

        a2 = args.subspace_index(0b0110)
        b2 = args.subspace_index(0b1010)
        c2 = args.subspace_index(0b1100)

        cirq.apply_matrix_to_slices(args.target_tensor,
                                    am,
                                    slices=[a1, a2],
                                    out=args.available_buffer)
        cirq.apply_matrix_to_slices(args.available_buffer,
                                    bm,
                                    slices=[b1, b2],
                                    out=args.target_tensor)
        return cirq.apply_matrix_to_slices(args.target_tensor,
                                           cm,
                                           slices=[c1, c2],
                                           out=args.available_buffer)
Example #4
0
 def _apply_unitary_(self,
                     args: 'cirq.ApplyUnitaryArgs') -> Optional[np.ndarray]:
     if cirq.is_parameterized(self):
         return None
     oi = args.subspace_index(0b01)
     io = args.subspace_index(0b10)
     ii = args.subspace_index(0b11)
     if self.theta != 0 or self.zeta != 0 or self.chi != 0:
         rx = protocols.unitary(cirq.rx(2 * self.theta))
         rz1 = protocols.unitary(cirq.rz(-self.zeta + self.chi))
         rz2 = protocols.unitary(cirq.rz(-self.zeta - self.chi))
         inner_matrix = rz1 @ rx @ rz2
         out = cirq.apply_matrix_to_slices(args.target_tensor,
                                           inner_matrix,
                                           slices=[oi, io],
                                           out=args.available_buffer)
     else:
         out = args.target_tensor
     if self.phi != 0:
         out[ii] *= cmath.exp(-1j * self.phi)
     if self.gamma != 0:
         f = cmath.exp(-1j * self.gamma)
         out[oi] *= f
         out[io] *= f
         out[ii] *= f * f
     return out
Example #5
0
def test_apply_matrix_to_slices():
    # Output is input.
    with pytest.raises(ValueError, match='out'):
        target = np.eye(2)
        _ = cirq.apply_matrix_to_slices(target=target,
                                        matrix=np.eye(2),
                                        out=target,
                                        slices=[0, 1])

    # Wrong matrix size.
    with pytest.raises(ValueError, match='shape'):
        target = np.eye(2)
        _ = cirq.apply_matrix_to_slices(target=target,
                                        matrix=np.eye(3),
                                        slices=[0, 1])

    # Empty case.
    np.testing.assert_allclose(
        cirq.apply_matrix_to_slices(target=np.array(range(5)),
                                    matrix=np.eye(0),
                                    slices=[]),
        np.array(range(5)),
    )

    # Middle 2x2 of 4x4 case.
    np.testing.assert_allclose(
        cirq.apply_matrix_to_slices(target=np.eye(4),
                                    matrix=np.array([[2, 3], [5, 7]]),
                                    slices=[1, 2]),
        np.array([[1, 0, 0, 0], [0, 2, 3, 0], [0, 5, 7, 0], [0, 0, 0, 1]]),
    )

    # Middle 2x2 of 4x4 with opposite order case.
    np.testing.assert_allclose(
        cirq.apply_matrix_to_slices(target=np.eye(4),
                                    matrix=np.array([[2, 3], [5, 7]]),
                                    slices=[2, 1]),
        np.array([[1, 0, 0, 0], [0, 7, 5, 0], [0, 3, 2, 0], [0, 0, 0, 1]]),
    )

    # Complicated slices of tensor case.
    np.testing.assert_allclose(
        cirq.apply_matrix_to_slices(
            target=np.array(range(8)).reshape((2, 2, 2)),
            matrix=np.array([[0, 1], [1, 0]]),
            slices=[(0, slice(None), 0), (1, slice(None), 0)],
        ).reshape((8, )),
        [4, 1, 6, 3, 0, 5, 2, 7],
    )

    # Specified output case.
    out = np.zeros(shape=(4, ))
    actual = cirq.apply_matrix_to_slices(target=np.array([1, 2, 3, 4]),
                                         matrix=np.array([[2, 3], [5, 7]]),
                                         slices=[1, 2],
                                         out=out)
    assert actual is out
    np.testing.assert_allclose(actual, np.array([1, 13, 31, 4]))
 def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs
                     ) -> Optional[np.ndarray]:
     if cirq.is_parameterized(self):
         return None
     inner_matrix = cirq.unitary(cirq.rx(-2 * np.pi * self.exponent))
     a = args.subspace_index(0b0011)
     b = args.subspace_index(0b1100)
     return cirq.apply_matrix_to_slices(args.target_tensor,
                                        inner_matrix,
                                        slices=[a, b],
                                        out=args.available_buffer)
 def _apply_unitary_(self,
                     args: cirq.ApplyUnitaryArgs) -> Optional[np.ndarray]:
     if cirq.is_parameterized(self):
         return None
     inner_matrix = cirq.unitary(cirq.Ry(-self.exponent * np.pi))
     oi = args.subspace_index(0b01)
     io = args.subspace_index(0b10)
     return cirq.apply_matrix_to_slices(args.target_tensor,
                                        inner_matrix,
                                        slices=[oi, io],
                                        out=args.available_buffer)
Example #8
0
 def _apply_unitary_(self, args: 'cirq.ApplyUnitaryArgs') -> Optional[np.ndarray]:
     if cirq.is_parameterized(self):
         return None
     if self.theta != 0:
         inner_matrix = protocols.unitary(cirq.rx(2 * self.theta))
         oi = args.subspace_index(0b01)
         io = args.subspace_index(0b10)
         out = cirq.apply_matrix_to_slices(
             args.target_tensor, inner_matrix, slices=[oi, io], out=args.available_buffer
         )
     else:
         out = args.target_tensor
     if self.phi != 0:
         ii = args.subspace_index(0b11)
         out[ii] *= cmath.exp(-1j * self.phi)
     return out