Example #1
0
def test(datasets, net):
    print(">> Evaluating network on test datasets...")
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta["mean"],
                                     std=net.meta["std"])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    # Lw = None
    Lw = net.meta["Lw"]["retrieval-SfM-120k"]["ss"]

    # evaluate on test datasets
    # datasets = args.test_datasets.split(",")
    for dataset in datasets:
        start = time.time()

        print(">> {}: Extracting...".format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), "test"))
        images = [cfg["im_fname"](cfg, i) for i in range(cfg["n"])]
        qimages = [cfg["qim_fname"](cfg, i) for i in range(cfg["nq"])]
        bbxs = [tuple(cfg["gnd"][i]["bbx"]) for i in range(cfg["nq"])]

        # extract database and query vectors
        print(">> {}: database images...".format(dataset))
        vecs = extract_vectors(net, images, image_size, transform)
        print(">> {}: query images...".format(dataset))
        qvecs = extract_vectors(net, qimages, image_size, transform, bbxs)

        print(">> {}: Evaluating...".format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg["gnd"])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw["m"], Lw["P"])
            qvecs_lw = whitenapply(qvecs, Lw["m"], Lw["P"])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + " + whiten", ranks, cfg["gnd"])

        print(">> {}: elapsed time: {}".format(dataset,
                                               htime(time.time() - start)))
def cal_ranks(vecs, qvecs, Lw):
    # search, rank, and print
    scores = np.dot(vecs.T, qvecs)
    ranks = np.argsort(-scores, axis=0)

    if Lw is not None:
        # whiten the vectors
        vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
        qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

        # search, rank, and print
        scores = np.dot(vecs_lw.T, qvecs_lw)
        ranks = np.argsort(-scores, axis=0)
    return scores, ranks
Example #3
0
def whiten(params, data):
    """Apply pre-computed whitening"""
    dimensions = params.pop("dimensions", None) or None
    assert not params, params.keys()
    whitening, names, values = data
    assert len(names) == len(values)
    resources = stats.ResourceUsage()

    time0 = time.time()
    whitened = whitenapply(values.T, whitening['m'], whitening['P'],
                           dimensions)
    timing = time.time() - time0
    metadata = {
        "timings": {
            "whitening_apply": round(timing, 2)
        },
        "resource_usage": resources.take_current_stats().get_resources()
    }

    return metadata, names, whitened.T
Example #4
0
def test(datasets, net, wandb_enabled=False, epoch=-1):
    
    global global_step

    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.test_whiten:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.test_whiten))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.test_whiten))
        wvecs = extract_vectors(net, images, image_size, transform)  # implemented with torch.no_grad
        
        # learning whitening 
        print('>> {}: Learning...'.format(args.test_whiten))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.test_whiten, htime(time.time()-start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(',')
    for dataset in datasets: 
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        
        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, image_size, transform)  # implemented with torch.no_grad
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, image_size, transform, bbxs)  # implemented with torch.no_grad
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step)
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step)
        
        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
Example #5
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    #download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            # loading db
            db_root = os.path.join(get_data_root(), 'train', args.whitening)
            ims_root = os.path.join(db_root, 'ims')
            db_fn = os.path.join(db_root,
                                 '{}-whiten.pkl'.format(args.whitening))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)
            images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net,
                                    images,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                args.image_size,
                                transform,
                                bbxs=bbxs,
                                ms=ms,
                                msp=msp)

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
Example #6
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.whitening))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.whitening)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.whitening))
        wvecs = extract_vectors(net,
                                images,
                                args.image_size,
                                transform,
                                ms=ms,
                                msp=msp)

        # learning whitening
        print('>> {}: Learning...'.format(args.whitening))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == 'reco':
            images, qimages = landmark_recognition_dataset()
            bbxs = [None for x in qimages]

        elif dataset == 'retr':
            images, _ = landmark_retrieval_dataset()
            qimages = []
            bbxs = [None for x in qimages]

        else:
            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        with open('%s_fnames.pkl' % dataset, 'wb') as f:
            pickle.dump([images, qimages], f)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        vecs = vecs.numpy()
        print('>> saving')
        np.save('{}_vecs.npy'.format(dataset), vecs)

        if len(qimages) > 0:
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    bbxs=bbxs,
                                    ms=ms,
                                    msp=msp)
            qvecs = qvecs.numpy()
            np.save('{}_qvecs.npy'.format(dataset), qvecs)

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # TODO

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
Example #7
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get('local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])
        
        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']
        
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        
        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms)>1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))            
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:
            
            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
            
            if len(ms)>1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))
                
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
                
                # learning whitening 
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets: 
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        try:
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        except:
            bbxs = None  # for holidaysmanrot and copydays
        
        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)
        torch.save(vecs, '/content/drive/My Drive/Image_retrieval/cnnimageretrieval-pytorch/data/data_vect.pt')
        torch.save(qvecs, '/content/drive/My Drive/Image_retrieval/cnnimageretrieval-pytorch/data/query_vect.pt')


        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])
            
            torch.save(vecs, '/content/drive/My Drive/Image_retrieval/cnnimageretrieval-pytorch/data/data_lw_vect.pt')
            torch.save(qvecs_lw, '/content/drive/My Drive/Image_retrieval/cnnimageretrieval-pytorch/data/query_lw_vect.pt')


            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])
        
        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
Example #8
0
def testHolidays(net, eConfig, dataset, Lw):

    print('>> Evaluating network on test dataset: {}'.format(dataset))

    # for testing we use image size of max 1024
    image_size = 1024

    ms = [1]
    msp = 1
    if (eConfig['multiscale']):
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # read the images and generate paths and queries-positive indexes
    dbpath = os.path.join(get_data_root(), 'test', 'holidays')
    ext = 'jpg' if dataset == 'holidays' else 'rjpg'
    images = sorted(os.listdir(os.path.join(dbpath, ext)))
    with open(os.path.join(dbpath, 'straight_gnd_holidays.pkl'), 'rb') as f:
        queries = pickle.load(f)
        positives = pickle.load(f)

    qidx = []
    pidx = []
    for i in range(len(queries)):

        qidx.append(images.index(queries[i]))

        aux = []
        for j in range(len(positives[i])):
            aux.append(images.index(positives[i][j]))
        pidx.append(aux)

    # extract database and query vectors
    print('>> {}: database images...'.format(dataset))
    X = extract_vectors(net, [os.path.join(dbpath, ext, n) for n in images],
                        image_size,
                        transform,
                        ms=ms,
                        msp=msp)

    print('>> {}: Evaluating...'.format(dataset))

    # rank the similarities
    X = X.numpy()

    if (Lw is not None):
        X = whitenapply(X, Lw['m'], Lw['P'])

    scores = np.dot(X.T, X)
    ranks = np.argsort(-scores, axis=1)
    ranks = ranks[qidx, 1::]

    APs = []
    for i, r in enumerate(ranks):
        trueRanks = np.isin(r, pidx[i])
        trueRanks = np.where(trueRanks == True)[0]
        APs.append(compute_ap(trueRanks, len(pidx[i])))

    mAP = np.mean(APs)
    print(">> {}: mAP {:.2f}".format(dataset, mAP * 100))

    # return the average mAP
    return (dataset + ('+ multiscale' if eConfig['multiscale'] else ''), mAP)
Example #9
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        net = load_network(args.network_path)

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        net = load_offtheshelf(args.network_offtheshelf)

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1./math.sqrt(2), 1./2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            if args.whitening == "scores":
                # special logic for scores database
                from score_retrieval.exports import (
                    db,
                    train_images as images,
                )

            else:
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == "scores":
            # Special added logic to handle loading our score dataset
            from score_retrieval.exports import (
                images,
                qimages,
                gnd,
            )

            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, ms=ms, msp=msp)

        else:
            # extract ground truth
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            gnd = cfg['gnd']

            # prepare config structure for the test dataset
            images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
            bbxs = [tuple(gnd[i]['bbx']) for i in range(cfg['nq'])]

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)

        # validation
        print(">> {}: gnd stats: {}, {}, {}".format(
            dataset,
            len(gnd),
            [len(x["ok"]) for x in gnd[10:]],
            [len(x["junk"]) for x in gnd[10:]],
        ))
        print(">> {}: image stats: {}, {}".format(dataset, len(images), len(qimages)))
        assert len(gnd) == len(qimages), (len(gnd), len(qimages))

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        print(">> {}: qvecs.shape: {}".format(dataset, qvecs.shape))

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        print(">> {}: ranks (shape {}) head: {}".format(dataset, ranks.shape, ranks[10:,10:]))
        print(">> {}: gnd head: {}".format(dataset, gnd[5:]))

        # Compute and print metrics
        compute_acc(ranks, gnd, dataset)
        compute_mrr(ranks, gnd, dataset)
        compute_map_and_print(dataset, ranks, gnd)

        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_acc(ranks, gnd, dataset + " + whiten")
            compute_mrr(ranks, gnd, dataset + " + whiten")
            compute_map_and_print(dataset + " + whiten", ranks, gnd)

        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
Example #10
0
def main():
    #def process(network_path, datasets='oxford5k,paris6k', whitening=None, image_size=1024, multiscale = '[1]', query=None):
    args = parser.parse_args()
    #args.query = None
    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    #download_test(get_data_root())

    # setting up the visible GPU
    #os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    #net.cuda()
    #net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None
            print(whiten_fn)
            return
            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    # query type

    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))

        #for i in cfg: print(i)
        #print(cfg['gnd'][0]['bbx'])
        #return

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        feas_dir = os.path.join(cfg['dir_data'], 'features')
        if not os.path.isdir(feas_dir):
            os.mkdir(feas_dir)
        feas_sv = os.path.join(
            feas_dir, dataset + '_' + args.network_path + '_features.pkl')
        if not os.path.isfile(feas_sv):
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            vecs = extract_vectors(net,
                                   images,
                                   args.image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            with open(feas_sv, 'wb') as f:
                pickle.dump(vecs, f)
        else:
            with open(feas_sv, 'rb') as f:
                vecs = pickle.load(f)

        print('>> {}: query images...'.format(dataset))
        if args.query is not None:
            qimages = [args.query]
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)
        else:
            qfeas_dir = feas_dir
            qfeas_sv = os.path.join(
                qfeas_dir,
                dataset + '_' + args.network_path + '_qfeatures.pkl')
            if not os.path.isfile(qfeas_sv):
                qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
                try:
                    bbxs = [
                        tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])
                    ]
                except:
                    bbxs = None
                qvecs = extract_vectors(net,
                                        qimages,
                                        args.image_size,
                                        transform,
                                        bbxs=bbxs,
                                        ms=ms,
                                        msp=msp)
                with open(qfeas_sv, 'wb') as f:
                    pickle.dump(qvecs, f)
            else:
                with open(qfeas_sv, 'rb') as f:
                    qvecs = pickle.load(f)

        print('>> {}: Evaluating...'.format(dataset))
        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        #qvecs = qvecs[:, 0].reshape(-1, 1)
        #args.query = True
        # search, rank, and print
        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranksw = np.argsort(-scores, axis=0)
            if args.query is None:
                #compute_map_and_print(dataset + ' + whiten', ranksw, cfg['gnd'])
                compute_map_and_print1(dataset + ' + whiten', ranksw,
                                       cfg['gnd'])

                scores = np.dot(vecs.T, qvecs)
                ranks = np.argsort(-scores, axis=0)
                # compute_map_and_print(dataset, ranks, cfg['gnd'])
                compute_map_and_print1(dataset, ranks, cfg['gnd'])
            else:
                a = []
                for i in ranksw:
                    a.append(
                        os.path.join(cfg['dir_images'], cfg['imlist'][i[0]]) +
                        cfg['ext'])
                print(a[:10])
                result = cfg['dir_data'] + '_result'
                with open(result + '.pkl', 'wb') as f:
                    pickle.dump(a[:10], f)
        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    # download_train(get_data_root())
    # download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get('local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False
        net_params['multi_layer_cat'] = state['meta']['multi_layer_cat']

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])
        
        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']
        
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        
        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    print(">> image size: {}".format(args.image_size))
    ms = list(eval(args.multiscale))
    if len(ms)>1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))            
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:
            
            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
            
            if len(ms)>1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))
                
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
                
                # learning whitening 
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets: 
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        print('>> not use bbxs...')
        bbxs = None

        # key_url_list = ParseData(os.path.join(get_data_root(), 'index.csv'))
        # index_image_path = os.path.join(get_data_root(), 'resize_index_image')
        # images = [os.path.join(index_image_path, key_url_list[i][0]) for i in range(len(key_url_list))]
        # key_url_list = ParseData(os.path.join(get_data_root(), 'test.csv'))
        # test_image_path = os.path.join(get_data_root(), 'resize_test_image')
        # qimages = [os.path.join(test_image_path, key_url_list[i][0]) for i in range(len(key_url_list))]
        # # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        # csvfile = open(os.path.join(get_data_root(), 'index_clear.csv'), 'r')
        # csvreader = csv.reader(csvfile)
        # images = [line[:1][0] for line in csvreader]
        #
        # csvfile = open(os.path.join(get_data_root(), 'test_clear.csv'), 'r')
        # csvreader = csv.reader(csvfile)
        # qimages = [line[:1][0] for line in csvreader]

        # bbxs = None
        
        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
        # vecs = torch.randn(2048, 5063)
        # vecs = torch.randn(2048, 4993)

        # hxq modified
        # bbxs = None
        # print('>> set no bbxs...')
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)

        # hxq modified, test add features map for retrieval
        # vecs = [vecs[i].numpy() for i in range(len(vecs))]
        # qvecs_temp = np.zeros((qvecs[0].shape[0], len(qvecs)))
        # for i in range(len(qvecs)):
        #     qvecs_temp[:, i] = qvecs[i][:, 0].numpy()
        # qvecs = qvecs_temp
        #
        # scores = np.zeros((len(vecs), qvecs.shape[-1]))
        # for i in range(len(vecs)):
        #     scores[i, :] = np.amax(np.dot(vecs[i].T, qvecs), 0)

        ranks = np.argsort(-scores, axis=0)
        mismatched_info = compute_map_and_print(dataset, ranks, cfg['gnd'], kappas=[1, 5, 10, 100])

        # hxq added
        show_false_img = False
        if show_false_img == True:
            print('>> Save mismatched image tuple...')
            for info in mismatched_info:
                mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs)
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            mismatched_info = compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

            # hxq added
            # show_false_img = False
            if show_false_img == True:
                print('>> Save mismatched image tuple...')
                for info in mismatched_info:
                    mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs)
        
        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
Example #12
0
def test(datasets, net, noise, image_size):
    global base
    print(">> Evaluating network on test datasets...")

    net.cuda()
    net.eval()
    normalize = transforms.Normalize(mean=net.meta["mean"],
                                     std=net.meta["std"])

    def add_noise(img):
        n = noise
        n = F.interpolate(n.unsqueeze(0),
                          mode=MODE,
                          size=tuple(img.shape[-2:]),
                          align_corners=True).squeeze()
        return torch.clamp(img + n, 0, 1)

    transform_base = transforms.Compose([transforms.ToTensor(), normalize])
    transform_query = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Lambda(add_noise), normalize])

    if "Lw" in net.meta:
        Lw = net.meta["Lw"]["retrieval-SfM-120k"]["ss"]
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(",")
    attack_result = {}
    for dataset in datasets:
        start = time.time()

        print(">> {}: Extracting...".format(dataset))

        cfg = configdataset(dataset, os.path.join(get_data_root(), "test"))
        images = [cfg["im_fname"](cfg, i) for i in range(cfg["n"])]
        qimages = [cfg["qim_fname"](cfg, i) for i in range(cfg["nq"])]
        bbxs = [tuple(cfg["gnd"][i]["bbx"]) for i in range(cfg["nq"])]

        # extract database and query vectors
        print(">> {}: database images...".format(dataset))
        with torch.no_grad():
            if dataset in base and str(image_size) in base[dataset]:
                vecs = base[dataset][str(image_size)]
            else:
                vecs = extract_vectors(net, images, image_size, transform_base)
                if dataset not in base:
                    base[dataset] = {}
                base[dataset][str(image_size)] = vecs
                fname = args.network_path.replace("/", "_") + ".pkl"
                with open(f"base/{fname}", "wb") as f:
                    pickle.dump(base, f)
            print(">> {}: query images...".format(dataset))
            qvecs = extract_vectors(net, qimages, image_size, transform_query,
                                    bbxs)

        print(">> {}: Evaluating...".format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # whiten the vectors
        vecs_lw = whitenapply(vecs, Lw["m"], Lw["P"])
        qvecs_lw = whitenapply(qvecs, Lw["m"], Lw["P"])

        # search, rank, and print
        scores = np.dot(vecs_lw.T, qvecs_lw)
        ranks = np.argsort(-scores, axis=0)
        r = compute_map_and_print(dataset + " + whiten", ranks, cfg["gnd"])
        attack_result[dataset] = r

        print(">> {}: elapsed time: {}".format(dataset,
                                               htime(time.time() - start)))
    return inv_gfr(
        attack_result,
        baseline_result[net.meta["architecture"]][net.meta["pooling"]])
Example #13
0
def main():
    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = '0'

    input_resol = 512
    # resolution of input image, will resize to that if larger
    # input_resol = 1024; # resolution of input image, will resize to that if larger
    scales = [1, 1 / np.sqrt(2),
              1 / 2]  # re-scaling factors for multi-scale extraction

    # sample image
    img_file = 'sanjuan.jpg'
    if not path.exists(img_file):
        os.system(
            'wget https://raw.githubusercontent.com/gtolias/tma/master/data/input/'
            + img_file)
    img = default_loader(img_file)

    print("use network trained with gem pooling and FC layer")
    state = load_url(TRAINED['rSfM120k-tl-resnet101-gem-w'],
                     model_dir=os.path.join(get_data_root(), 'networks'))
    net = init_network({
        'architecture': state['meta']['architecture'],
        'pooling': state['meta']['pooling'],
        'whitening': state['meta'].get('whitening')
    })
    net.load_state_dict(state['state_dict'])
    net.eval()
    net.cuda()
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=state['meta']['mean'],
                             std=state['meta']['std'])
    ])
    # single-scale extraction
    vec = extract_ss(net,
                     transform(imresize(img, input_resol)).unsqueeze(0).cuda())
    vec = vec.data.cpu().numpy()
    print(vec)
    # multi-scale extraction
    vec = extract_ms(net,
                     transform(imresize(img, input_resol)).unsqueeze(0).cuda(),
                     ms=scales,
                     msp=1.0)
    vec = vec.data.cpu().numpy()
    print(vec)
    print("\n")

    print(
        "use network trained with gem pooling, and apply the learned whitening transformation"
    )
    state = load_url(TRAINED['retrievalSfM120k-resnet101-gem'],
                     model_dir=os.path.join(get_data_root(), 'networks'))
    net = init_network({
        'architecture': state['meta']['architecture'],
        'pooling': state['meta']['pooling'],
        'whitening': state['meta'].get('whitening')
    })
    net.load_state_dict(state['state_dict'])
    net.eval()
    net.cuda()
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=state['meta']['mean'],
                             std=state['meta']['std'])
    ])

    # single-scale extraction
    vec = extract_ss(net,
                     transform(imresize(img, input_resol)).unsqueeze(0).cuda())
    vec = vec.data.cpu().numpy()
    print(vec)
    whiten_ss = state['meta']['Lw']['retrieval-SfM-120k']['ss']
    vec = whitenapply(vec.reshape(-1, 1), whiten_ss['m'],
                      whiten_ss['P']).reshape(-1)
    print(vec)

    # multi-scale extraction
    vec = extract_ms(net,
                     transform(imresize(img, input_resol)).unsqueeze(0).cuda(),
                     ms=scales,
                     msp=net.pool.p.item())
    vec = vec.data.cpu().numpy()
    print(vec)
    whiten_ms = state['meta']['Lw']['retrieval-SfM-120k']['ms']
    vec = whitenapply(vec.reshape(-1, 1), whiten_ms['m'],
                      whiten_ms['P']).reshape(-1)
    print(vec)
    print("\n")

    print("use pre-trained (on ImageNet) network with appended mac pooling")
    net = init_network({
        'architecture': 'resnet101',
        'pooling': 'mac',
        'pretrained': True
    })
    net.eval()
    net.cuda()
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=net.meta['mean'], std=net.meta['std'])
    ])

    # single-scale extraction
    vec = extract_ss(net,
                     transform(imresize(img, input_resol)).unsqueeze(0).cuda())
    vec = vec.data.cpu().numpy()
    print(vec)
    # multi-scale extraction
    vec = extract_ms(net,
                     transform(imresize(img, input_resol)).unsqueeze(0).cuda(),
                     ms=scales,
                     msp=1.0)
    vec = vec.data.cpu().numpy()
    print(vec)
    print("\n")
Example #14
0
def test(datasets, net):
    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.test_whiten:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.test_whiten))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.test_whiten))
        wvecs = extract_vectors(net,
                                images,
                                image_size,
                                transform,
                                print_freq=10,
                                batchsize=20)  # implemented with torch.no_grad

        # learning whitening
        print('>> {}: Learning...'.format(args.test_whiten))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.test_whiten,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        if dataset == 'cdvs_test_retrieval':
            bbxs = None
        else:
            bbxs = None

        print('>> {}: database images...'.format(dataset))
        if args.pool == 'gem':
            ms = [1, 1 / 2**(1 / 2), 1 / 2]
        else:
            ms = [1]
        if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
                'regional'] and not net.meta['whitening']:
            msp = net.pool.p.item()
            print(">> Set-up multiscale:")
            print(">>>> ms: {}".format(ms))
            print(">>>> msp: {}".format(msp))
        else:
            msp = 1
        vecs = extract_vectors(net,
                               images,
                               image_size,
                               transform,
                               bbxs,
                               ms=ms,
                               msp=msp,
                               print_freq=1000,
                               batchsize=1)  # implemented with torch.no_grad
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                image_size,
                                transform,
                                bbxs,
                                ms=ms,
                                msp=msp,
                                print_freq=1000,
                                batchsize=1)  # implemented with torch.no_grad

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        if dataset == 'cdvs_test_retrieval':
            compute_map_and_print(dataset, ranks, cfg['gnd_id'])
        else:
            compute_map_and_print(dataset, ranks, cfg['gnd'])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
def main():
    args = parser.parse_args()

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        if "epoch" in state:
            print("Model after {} epochs".format(state["epoch"]))
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters: test both single scale and multiscale
    ms_singlescale = [1]
    msp_singlescale = 1

    ms_multiscale = list(eval(args.multiscale))
    msp_multiscale = 1
    if len(ms_multiscale
           ) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
               'regional'] and not net.meta['whitening']:
        msp_multiscale = net.pool.p.item()
    print(">> Set-up multiscale:")
    print(">>>> ms: {}".format(ms_multiscale))
    print(">>>> msp: {}".format(msp_multiscale))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()
        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:
            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))
            Lw = net.meta['Lw'][args.whitening]
        else:
            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)
            else:
                Lw = {}
                for whiten_type, ms, msp in zip(
                    ["ss", "ms"], [ms_singlescale, ms_multiscale],
                    [msp_singlescale, msp_multiscale]):
                    print('>> {0}: Learning whitening {1}...'.format(
                        args.whitening, whiten_type))

                    # loading db
                    db_root = os.path.join(get_data_root(), 'train',
                                           args.whitening)
                    ims_root = os.path.join(db_root, 'ims')
                    db_fn = os.path.join(
                        db_root, '{}-whiten.pkl'.format(args.whitening))
                    with open(db_fn, 'rb') as f:
                        db = pickle.load(f)
                    images = [
                        cid2filename(db['cids'][i], ims_root)
                        for i in range(len(db['cids']))
                    ]

                    # extract whitening vectors
                    print('>> {}: Extracting...'.format(args.whitening))
                    wvecs = extract_vectors(net,
                                            images,
                                            args.image_size,
                                            transform,
                                            ms=ms,
                                            msp=msp)

                    # learning whitening
                    print('>> {}: Learning...'.format(args.whitening))
                    wvecs = wvecs.numpy()
                    m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                    Lw[whiten_type] = {'m': m, 'P': P}

                    print('>> {}: elapsed time: {}'.format(
                        args.whitening, htime(time.time() - start)))

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        for whiten_type, ms, msp in zip(["ss", "ms"],
                                        [ms_singlescale, ms_multiscale],
                                        [msp_singlescale, msp_multiscale]):
            print('>> Extracting feature on {0}, whitening {1}'.format(
                dataset, whiten_type))

            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net,
                                   images,
                                   args.image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    bbxs=bbxs,
                                    ms=ms,
                                    msp=msp)

            print('>> {}: Evaluating...'.format(dataset))

            # convert to numpy
            vecs = vecs.numpy()
            qvecs = qvecs.numpy()

            # search, rank, and print
            scores = np.dot(vecs.T, qvecs)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset, ranks, cfg['gnd'])

            if Lw is not None:
                # whiten the vectors
                vecs_lw = whitenapply(vecs, Lw[whiten_type]['m'],
                                      Lw[whiten_type]['P'])
                qvecs_lw = whitenapply(qvecs, Lw[whiten_type]['m'],
                                       Lw[whiten_type]['P'])

                # search, rank, and print
                scores = np.dot(vecs_lw.T, qvecs_lw)
                ranks = np.argsort(-scores, axis=0)
                compute_map_and_print(
                    dataset + ' + whiten {}'.format(whiten_type), ranks,
                    cfg['gnd'])

            print('>> {}: elapsed time: {}'.format(dataset,
                                                   htime(time.time() - start)))
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    # download_train(get_data_root())
    # download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()
        print('>> {}: Extracting...'.format(dataset))

        print('>> Prepare data information...')
        index_file_path = os.path.join(get_data_root(), 'index.csv')
        index_mark_path = os.path.join(get_data_root(), 'index_mark.csv')
        index_miss_path = os.path.join(get_data_root(), 'index_miss.csv')
        test_file_path = os.path.join(get_data_root(), 'test.csv')
        test_mark_path = os.path.join(get_data_root(), 'test_mark.csv')
        test_mark_add_path = os.path.join(get_data_root(), 'test_mark_add.csv')
        test_miss_path = os.path.join(get_data_root(), 'test_miss.csv')
        if dataset == 'google-landmarks-dataset':
            index_img_path = os.path.join(get_data_root(), 'index')
            test_img_path = os.path.join(get_data_root(),
                                         'google-landmarks-dataset-test')
        elif dataset == 'google-landmarks-dataset-resize':
            index_img_path = os.path.join(get_data_root(),
                                          'resize_index_image')
            test_img_path = os.path.join(get_data_root(), 'resize_test_image')
        if not (os.path.isfile(index_mark_path)
                or os.path.isfile(index_miss_path)):
            clear_no_exist(index_file_path, index_mark_path, index_miss_path,
                           index_img_path)
        if not (os.path.isfile(test_mark_path)
                or os.path.isfile(test_miss_path)):
            clear_no_exist(test_file_path, test_mark_path, test_miss_path,
                           test_img_path)

        print('>> load index image path...')
        retrieval_other_dataset = '/home/iap205/Datasets/google-landmarks-dataset-resize'
        csvfile = open(index_mark_path, 'r')
        csvreader = csv.reader(csvfile)
        images = []
        miss, add = 0, 0
        for line in csvreader:
            if line[0] == '1':
                images.append(os.path.join(index_img_path, line[1] + '.jpg'))
            elif line[0] == '0':
                retrieval_img_path = os.path.join(retrieval_other_dataset,
                                                  'resize_index_image',
                                                  line[1] + '.jpg')
                if os.path.isfile(retrieval_img_path):
                    images.append(retrieval_img_path)
                    add += 1
                miss += 1
        csvfile.close()
        print(
            '>>>> index image miss: {}, supplement: {}, still miss: {}'.format(
                miss, add, miss - add))

        print('>> load query image path...')
        csvfile = open(test_mark_path, 'r')
        csvreader = csv.reader(csvfile)
        savefile = open(test_mark_add_path, 'w')
        save_writer = csv.writer(savefile)
        qimages = []
        miss, add = 0, 0
        for line in csvreader:
            if line[0] == '1':
                qimages.append(os.path.join(test_img_path, line[1] + '.jpg'))
                save_writer.writerow(line)
            elif line[0] == '0':
                retrieval_img_path = os.path.join(retrieval_other_dataset,
                                                  'resize_test_image',
                                                  line[1] + '.jpg')
                if os.path.isfile(retrieval_img_path):
                    qimages.append(retrieval_img_path)
                    save_writer.writerow(['1', line[1]])
                    add += 1
                else:
                    save_writer.writerow(line)
                miss += 1
        csvfile.close()
        savefile.close()
        print(
            '>>>> test image miss: {}, supplement: {}, still miss: {}'.format(
                miss, add, miss - add))

        # extract index vectors
        print('>> {}: index images...'.format(dataset))
        split_num = 6
        extract_num = int(len(images) / split_num)
        num_list = list(range(0, len(images), extract_num))
        num_list.append(len(images))

        # k = 0
        # print('>>>> extract part {} of {}'.format(k, split_num-1))
        # vecs = extract_vectors(net, images[num_list[k]:num_list[k+1]], args.image_size, transform, ms=ms, msp=msp)
        # vecs = vecs.numpy()
        # print('>>>> save index vecs to pkl...')
        # vecs_file_path = os.path.join(get_data_root(), 'index_vecs{}_of_{}.pkl'.format(k+1, split_num))
        # vecs_file = open(vecs_file_path, 'wb')
        # pickle.dump(vecs[:, num_list[k]:num_list[k+1]], vecs_file)
        # vecs_file.close()
        # print('>>>> index_vecs{}_of_{}.pkl save done...'.format(k+1, split_num))

        for i in range(split_num):
            # vecs_temp = np.loadtxt(open(os.path.join(get_data_root(), 'index_vecs{}_of_{}.csv'.format(i+1, split_num)), "rb"),
            #                        delimiter=",", skiprows=0)
            with open(
                    os.path.join(
                        get_data_root(),
                        'index_vecs{}_of_{}.pkl'.format(i + 1, split_num)),
                    'rb') as f:
                vecs_temp = pickle.load(f)
            if i == 0:
                vecs = vecs_temp
            else:
                vecs = np.hstack((vecs, vecs_temp[:, :]))
            del vecs_temp
            gc.collect()
            print('\r>>>> index_vecs{}_of_{}.pkl load done...'.format(
                i + 1, split_num),
                  end='')
        print('')

        # extract query vectors
        print('>> {}: query images...'.format(dataset))
        split_num = 1
        extract_num = int(len(qimages) / split_num)
        num_list = list(range(0, len(qimages), extract_num))
        num_list.append(len(qimages))
        # k = 0
        # print('>>>> extract part {} of {}'.format(k, split_num - 1))
        # qvecs = extract_vectors(net, qimages[num_list[k]:num_list[k + 1]], args.image_size, transform, ms=ms, msp=msp)
        # qvecs = qvecs.numpy()
        # for i in range(split_num):
        #     qvecs_file_path = os.path.join(get_data_root(), 'test_vecs{}_of_{}.pkl'.format(i+1, split_num))
        #     qvecs_file = open(qvecs_file_path, 'wb')
        #     pickle.dump(qvecs[:, num_list[i]:num_list[i+1]], qvecs_file)
        #     qvecs_file.close()
        #     print('\r>>>> test_vecs{}_of_{}.pkl save done...'.format(i+1, split_num), end='')
        # print('')

        for i in range(split_num):
            # qvecs_temp = np.loadtxt(open(os.path.join(get_data_root(), 'test_vecs{}_of_{}.csv'.format(i+1, split_num)), "rb"),
            #                         delimiter=",", skiprows=0)
            with open(
                    os.path.join(
                        get_data_root(),
                        'test_vecs{}_of_{}.pkl'.format(i + 1, split_num)),
                    'rb') as f:
                qvecs_temp = pickle.load(f)
            if i == 0:
                qvecs = qvecs_temp
            else:
                qvecs = np.hstack((qvecs, qvecs_temp[:, :]))
            del qvecs_temp
            gc.collect()
            print('\r>>>> test_vecs{}_of_{}.pkl load done...'.format(
                i + 1, split_num),
                  end='')
        print('')

        # vecs = np.zeros((2048, 1093278))
        # qvecs = np.zeros((2048, 115921))

        # save vecs to csv file
        # np.savetxt(os.path.join(get_data_root(), 'index_vecs{}_of_{}.csv'.format(k, split_num-1)), vecs, delimiter=',')
        # np.savetxt(os.path.join(get_data_root(), 'test_vecs{}_of_{}.csv'.format(k, split_num-1)), qvecs, delimiter=',')

        # compute whitening
        if args.whitening is not None:
            start = time.time()
            if 'Lw' in net.meta and args.whitening in net.meta['Lw']:
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                if len(ms) > 1:
                    Lw = net.meta['Lw'][args.whitening]['ms']
                else:
                    Lw = net.meta['Lw'][args.whitening]['ss']
            else:
                # if we evaluate networks from path we should save/load whitening
                # not to compute it every time
                if args.network_path is not None:
                    whiten_fn = args.network_path + '_{}_whiten'.format(
                        args.whitening)
                    if len(ms) > 1:
                        whiten_fn += '_ms'
                    whiten_fn += '.pth'
                else:
                    whiten_fn = None
                if whiten_fn is not None and os.path.isfile(whiten_fn):
                    print('>> {}: Whitening is precomputed, loading it...'.
                          format(args.whitening))
                    Lw = torch.load(whiten_fn)
                else:
                    print('>> {}: Learning whitening...'.format(
                        args.whitening))
                    # extract whitening vectors
                    print('>> {}: Extracting...'.format(args.whitening))
                    wvecs = vecs
                    # learning whitening
                    print('>> {}: Learning...'.format(args.whitening))
                    m, P = pcawhitenlearn(wvecs)
                    Lw = {'m': m, 'P': P}
                    # saving whitening if whiten_fn exists
                    if whiten_fn is not None:
                        print('>> {}: Saving to {}...'.format(
                            args.whitening, whiten_fn))
                        torch.save(Lw, whiten_fn)
            print('>> {}: elapsed time: {}'.format(args.whitening,
                                                   htime(time.time() - start)))
        else:
            Lw = None

        print('>> apply PCAwhiten...')
        if Lw is not None:
            # whiten the vectors and shrinkage
            vecs = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs = whitenapply(qvecs, Lw['m'], Lw['P'])

        print('>>>> save index PCAwhiten vecs to pkl...')
        split_num = 6
        extract_num = int(len(images) / split_num)
        num_list = list(range(0, len(images), extract_num))
        num_list.append(len(images))
        for i in range(split_num):
            vecs_file_path = os.path.join(
                get_data_root(),
                'index_PCAwhiten_vecs{}_of_{}.pkl'.format(i + 1, split_num))
            vecs_file = open(vecs_file_path, 'wb')
            pickle.dump(vecs[:, num_list[i]:num_list[i + 1]], vecs_file)
            vecs_file.close()
            print(
                '\r>>>> index_PCAwhiten_vecs{}_of_{}.pkl save done...'.format(
                    i + 1, split_num),
                end='')
        print('')

        print('>>>> save test PCAwhiten vecs to pkl...')
        split_num = 1
        extract_num = int(len(qimages) / split_num)
        num_list = list(range(0, len(qimages), extract_num))
        num_list.append(len(images))
        for i in range(split_num):
            qvecs_file_path = os.path.join(
                get_data_root(),
                'test_PCAwhiten_vecs{}_of_{}.pkl'.format(i + 1, split_num))
            qvecs_file = open(qvecs_file_path, 'wb')
            pickle.dump(qvecs[:, num_list[i]:num_list[i + 1]], qvecs_file)
            qvecs_file.close()
            print('\r>>>> test_PCAwhiten_vecs{}_of_{}.pkl save done...'.format(
                i + 1, split_num),
                  end='')
        print('')

        print('>>>> load index PCAwhiten vecs from pkl...')
        for i in range(split_num):
            with open(
                    os.path.join(
                        get_data_root(),
                        'index_PCAwhiten_vecs{}_of_{}.pkl'.format(
                            i + 1, split_num)), 'rb') as f:
                vecs_temp = pickle.load(f)
            if i == 0:
                vecs = vecs_temp
            else:
                vecs = np.hstack((vecs, vecs_temp[:, :]))
            del vecs_temp
            gc.collect()
            print(
                '\r>>>> index_PCAwhiten_vecs{}_of_{}.pkl load done...'.format(
                    i + 1, split_num),
                end='')
        print('')

        print('>>>> load test PCAwhiten vecs from pkl...')
        for i in range(split_num):
            with open(
                    os.path.join(
                        get_data_root(),
                        'test_PCAwhiten_vecs{}_of_{}.pkl'.format(
                            i + 1, split_num)), 'rb') as f:
                qvecs_temp = pickle.load(f)
            if i == 0:
                qvecs = qvecs_temp
            else:
                qvecs = np.hstack((qvecs, qvecs_temp[:, :]))
            del qvecs_temp
            gc.collect()
            print('\r>>>> test_PCAwhiten_vecs{}_of_{}.pkl load done...'.format(
                i + 1, split_num),
                  end='')
        print('')

        # extract principal components and dimension shrinkage
        ratio = 0.8
        vecs = vecs[:int(vecs.shape[0] * ratio), :]
        qvecs = vecs[:int(qvecs.shape[0] * ratio), :]

        print('>> {}: Evaluating...'.format(dataset))
        split_num = 50
        top_num = 100
        vecs_T = np.zeros((vecs.shape[1], vecs.shape[0])).astype('float32')
        vecs_T[:] = vecs.T[:]
        QE_iter = 0
        QE_weight = (np.arange(top_num, 0, -1) / top_num).reshape(
            1, top_num, 1)
        print('>> find {} nearest neighbour...'.format(top_num))
        import faiss  # place it in the file top will cause network load so slowly

        # ranks_top_100 = np.loadtxt(open(os.path.join(get_data_root(), 'ranks_top_{}.csv'.format(top_num)), "rb"),
        #            delimiter=",", skiprows=0).astype('int')

        for iter in range(0, QE_iter + 1):
            if iter != 0:
                # ranks_top_100 = np.ones((100, 115921)).astype('int')
                print('>> Query expansion iteration {}'.format(iter))
                ranks_split = 50
                for i in range(ranks_split):
                    ranks_top_100_split = ranks_top_100[:,
                                                        int(ranks_top_100.
                                                            shape[1] /
                                                            ranks_split * i
                                                            ):int(ranks_top_100
                                                                  .shape[1] /
                                                                  ranks_split *
                                                                  (i + 1))]
                    top_100_vecs = vecs[:,
                                        ranks_top_100_split]  # (2048, 100, query_split_size)
                    qvecs_temp = (top_100_vecs * QE_weight).sum(axis=1)
                    qvecs_temp = qvecs_temp / (np.linalg.norm(
                        qvecs_temp, ord=2, axis=0, keepdims=True) + 1e-6)
                    if i == 0:
                        qvecs = qvecs_temp
                    else:
                        qvecs = np.hstack((qvecs, qvecs_temp))
                    del ranks_top_100_split, top_100_vecs, qvecs_temp
                    gc.collect()
                    print('\r>>>> calculate new query vectors {}/{} done...'.
                          format(i + 1, ranks_split),
                          end='')
                print('')
                qe_iter_qvecs_path = os.path.join(
                    get_data_root(), 'QE_iter{}_qvecs.pkl'.format(iter))
                qe_iter_qvecs_file = open(qe_iter_qvecs_path, 'wb')
                pickle.dump(qvecs, qe_iter_qvecs_file)
                qe_iter_qvecs_file.close()
                print('>>>> QE_iter{}_qvecs.pkl save done...'.format(iter))
                del ranks_top_100
                gc.collect()
            for i in range(split_num):
                # scores = np.dot(vecs.T, qvecs[:, int(qvecs.shape[1]/split_num*i):int(qvecs.shape[1]/split_num*(i+1))])
                # ranks = np.argsort(-scores, axis=0)

                # kNN search
                k = top_num
                index = faiss.IndexFlatL2(vecs.shape[0])
                index.add(vecs_T)
                query_vecs = qvecs[:,
                                   int(qvecs.shape[1] / split_num *
                                       i):int(qvecs.shape[1] / split_num *
                                              (i + 1))]
                qvecs_T = np.zeros((query_vecs.shape[1],
                                    query_vecs.shape[0])).astype('float32')
                qvecs_T[:] = query_vecs.T[:]
                _, ranks = index.search(qvecs_T, k)
                ranks = ranks.T
                if i == 0:
                    ranks_top_100 = ranks[:top_num, :]
                else:
                    ranks_top_100 = np.hstack(
                        (ranks_top_100, ranks[:top_num, :]))
                # del scores, ranks
                del index, query_vecs, qvecs_T, ranks
                gc.collect()
                print('\r>>>> kNN search {} nearest neighbour {}/{} done...'.
                      format(top_num, i + 1, split_num),
                      end='')
            del qvecs
            gc.collect()
            print('')
        del vecs, vecs_T
        gc.collect()

        # save to csv file
        print(">> save to submission.csv file...")
        submission_file = open(os.path.join(get_data_root(), 'submission.csv'),
                               'w')
        writer = csv.writer(submission_file)
        test_mark_file = open(test_mark_add_path, 'r')
        csvreader = csv.reader(test_mark_file)
        cnt = 0
        writer.writerow(['id', 'images'])
        for index, line in enumerate(csvreader):
            (flag, img_name) = line[:2]
            if flag == '1':
                select = []
                for i in range(top_num):
                    select.append(images[int(
                        ranks_top_100[i,
                                      cnt])].split('/')[-1].split('.jpg')[0])
                cnt += 1
                writer.writerow([
                    img_name.split('/')[-1].split('.jpg')[0], ' '.join(select)
                ])
            else:
                # random_list = random.sample(range(0, len(images)), top_num)
                random_list = np.random.choice(len(images),
                                               top_num,
                                               replace=False)
                select = []
                for i in range(top_num):
                    select.append(
                        images[random_list[i]].split('/')[-1].split('.jpg')[0])
                writer.writerow([
                    img_name.split('/')[-1].split('.jpg')[0], ' '.join(select)
                ])
            if cnt % 10 == 0 or cnt == len(qimages):
                print('\r>>>> {}/{} done...'.format(cnt, len(qimages)), end='')
        submission_file.close()
        test_mark_file.close()
        print('')
        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
Example #17
0
def call_benchmark(
    # must pass one of images or paths
    images=None,
    paths=None,
    **kwargs,
):
    """Run the given network on the given data and return vectors for it."""
    # load params
    params = default_params.copy()
    params.update(kwargs)

    network = params["network"]
    offtheshelf = params["offtheshelf"]
    image_size = params["image_size"]
    gpu = params["gpu"]
    multiscale = params["multiscale"]
    whitening = params["whitening"]

    net_key = (network, offtheshelf, gpu)

    if net_key in LOADED_NETWORKS:
        net = LOADED_NETWORKS[net_key]

    else:
        # load network
        if offtheshelf:
            net = load_offtheshelf(network)
        else:
            net = load_network(network)

        # moving network to gpu and eval mode
        if gpu:
            net.cuda()
        net.eval()

        # store network in memo dict
        LOADED_NETWORKS[net_key] = net

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if multiscale:
        ms = [1, 1 / np.sqrt(2), 1 / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std'],
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])

    # setting up whitening
    if whitening is not None:
        if 'Lw' in net.meta and whitening in net.meta['Lw']:
            if multiscale:
                Lw = net.meta['Lw'][whitening]['ms']
            else:
                Lw = net.meta['Lw'][whitening]['ss']
        elif whitening == "scores":
            whiten_key = (network, offtheshelf, image_size, multiscale)
            Lw = get_scores_whitening(whiten_key,
                                      net,
                                      transform,
                                      ms,
                                      msp,
                                      image_size,
                                      setup_network=False,
                                      gpu=gpu)
        else:
            raise ValueError(
                "invalid whitening {} (valid whitenings: {})".format(
                    whitening, list(net.meta['Lw'].keys())))

    # process the given data
    if images is not None:
        images = np.asarray(images)
        print("images.shape =", images.shape)
        vecs = vectors_from_images(net,
                                   images,
                                   transform,
                                   ms=ms,
                                   msp=msp,
                                   setup_network=False,
                                   gpu=gpu)
    else:
        vecs = extract_vectors(net,
                               paths,
                               image_size,
                               transform,
                               ms=ms,
                               msp=msp,
                               setup_network=False,
                               gpu=gpu)

    # convert to numpy
    vecs = vecs.numpy()

    # apply whitening
    if whitening is not None:
        vecs = whitenapply(vecs, Lw['m'], Lw['P'])

    # take transpose
    vecs = vecs.T
    print("vecs.shape =", vecs.shape)
    return vecs
                    Lw = {'m': m, 'P': P}
                    # saving whitening if whiten_fn exists
                    if whiten_fn is not None:
                        print('>> {}: Saving to {}...'.format(
                            whitening, whiten_fn))
                        # torch.save(Lw, whiten_fn)
            print('>> {}: elapsed time: {}'.format(whitening,
                                                   htime(time.time() - start)))
        else:
            Lw = None

        if Lw is not None:
            for dim in param['pac_dims']:
                print('>>>> pac_dim: {}'.format(dim))
                # whiten the vectors
                vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'], dim)
                qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'], dim)

                # search, rank, and print
                scores = np.dot(vecs_lw.T, qvecs_lw)
                ranks_lw = np.argsort(-scores, axis=0)
                qvecs_lw_orig = qvecs_lw
                ranks_lw_orig = ranks_lw
                mismatched_info = compute_map_and_print(dataset + ' + whiten',
                                                        ranks_lw,
                                                        cfg['gnd'],
                                                        kappas=[1, 5, 10, 100])

# %%
# save vecs, qvecs, ranks to pickle
import pickle
Example #19
0
def testOxfordParisHolidays(net, eConfig):

    #datasets = eConfig['test-datasets'].split(',')
    #results = []
    #
    #for dataset in datasets:
    #    results.append((dataset, np.random.rand(1)[0]))
    #
    #return results

    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if (eConfig['multiscale']):
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if eConfig['whitening']:

        start = time.time()

        print('>> {}: Learning whitening...'.format(eConfig['test-whiten']))

        # loading db
        db_root = os.path.join(get_data_root(), 'train',
                               eConfig['test-whiten'])
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root,
                             '{}-whiten.pkl'.format(eConfig['test-whiten']))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(eConfig['test-whiten']))
        wvecs = extract_vectors(net,
                                images,
                                image_size,
                                transform,
                                ms=ms,
                                msp=msp)

        # learning whitening
        print('>> {}: Learning...'.format(eConfig['test-whiten']))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(eConfig['test-whiten'],
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = eConfig['test-datasets'].split(',')
    results = []

    for dataset in datasets:
        start = time.time()

        if (dataset != 'holidays' and dataset != 'rholidays'):
            print('>> {}: Extracting...'.format(dataset))

            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

            if (dataset == 'oxford105k' or dataset == 'paris106k'):
                images.extend(cfg['distractors'])

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net,
                                   images,
                                   image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    image_size,
                                    transform,
                                    bbxs,
                                    ms=ms,
                                    msp=msp)
            print('>> {}: Evaluating...'.format(dataset))

            # convert to numpy
            vecs = vecs.numpy()
            qvecs = qvecs.numpy()

            # search, rank, and print
            scores = np.dot(vecs.T, qvecs)
            ranks = np.argsort(-scores, axis=0)
            results.append(
                compute_map_and_print(
                    dataset +
                    ('+ multiscale' if eConfig['multiscale'] else ''), ranks,
                    cfg['gnd']))

            if Lw is not None:
                # whiten the vectors
                vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
                qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

                # search, rank, and print
                scores = np.dot(vecs_lw.T, qvecs_lw)
                ranks = np.argsort(-scores, axis=0)
                results.append(
                    compute_map_and_print(dataset + ' + whiten', ranks,
                                          cfg['gnd']))

        else:
            results.append(testHolidays(net, eConfig, dataset, Lw))

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))

    return results
Example #20
0
File: test.py Project: wzb1005/mdir
def embed(params, data):
    net = params.pop("net")
    imgdir = params.pop("imgdir")
    whitening = params.pop("whitening", None)
    whitening_dir = params.pop("whitening_dir", None)
    image_size = params.pop("image_size", 1024)
    multiscale = params.pop("multiscale", True)
    assert not params, params.keys()
    input_images, bbxs = (data[0], None) if len(data) == 1 else data
    impaths = [path_join(imgdir, x) for x in input_images]
    if not data[0]:
        return ({
            "status": "skipped"
        }, [], []) + (([], ) if whitening_dir else tuple())

    # Handle paths
    assert os.path.exists(net), net

    # loading network from path
    print(">> Loading network:\n>>>> '{}'".format(net))
    state = torch.load(net)
    net = init_network({
        'architecture': state['meta']['architecture'],
        'pooling': state['meta']['pooling'],
        'whitening': state['meta']['whitening'],
        'mean': state['meta']['mean'],
        'std': state['meta']['std'],
        'pretrained': False
    })
    net.load_state_dict(state['state_dict'])
    print(">>>> loaded network: ")
    print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = multiscale if not isinstance(
        multiscale, bool) else [1, 1. / math.sqrt(2), 1. /
                                2] if multiscale else [1]
    if net.meta['pooling'] == 'gem' and net.whiten is None:
        msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if whitening_dir:
        whitening_dir = os.path.join(
            whitening_dir,
            "%s_%s_%s_%s.lw.pkl" % (whitening, None, image_size, multiscale))
        print('>> {}: Loading whitening...'.format(whitening))
        with open(whitening_dir, "rb") as handle:
            Lw = pickle.load(handle)
    # elif whitening:
    #     Lw, _ = _compute_whitening(whitening, net, image_size, transform, ms, msp)
    else:
        Lw = None

    # extract database and query vectors
    print('>> Images descriptors...')
    vecs = extract_vectors(net,
                           impaths,
                           image_size,
                           transform,
                           bbxs=bbxs,
                           ms=ms,
                           msp=msp)

    print('>> Evaluating...')

    # convert to numpy
    vecs = vecs.numpy()

    if Lw is not None:
        # whiten the vectors
        vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
        return {}, input_images, vecs.T, vecs_lw.T

    return {}, input_images, vecs.T