def get_classification_result(true_labels, pred_labels): """Return classification resuls for one fold. Return an array containing accuracy, precision, recall, and f1, based on the given true and predicted labels. Keyword arguments: fold_no -- this fold's number true_labels -- true labels pred_labels -- predicted labels """ res = np.zeros((1, 4)) res[:] = calc_metrics(true_labels, pred_labels) return res
def get_classification_result(fold_no, true_labels, pred_labels): """Return classification resuls for one fold. Return an array containing accuracy, precision, recall, and f1, based on the given true and predicted labels. Parameters ---------- fold_no : int this fold's number true_labels list(int) true labels pred_labels list(int) predicted labels Returns ------- ndarray [fold number, accuracy, precision, recall, f1] """ res = calc_metrics(true_labels, pred_labels) return np.asarray([fold_no] + [r for r in res])