#----------------------------------------------------------------------- #----------------------------------------------------------------------- # Read the MAOOAM nature run #----------------------------------------------------------------------- infile = 'x_nature.pkl' sv = state_vector() sv = sv.load(infile) x_nature = sv.getTrajectory() maxit, xdim = np.shape(x_nature) #----------------------------------------------------------------------- # Read the MAOOAM observations #----------------------------------------------------------------------- infile = 'y_obs.pkl' obs = obs_data() obs = obs.load(infile) #----------------------------------------------------------------------- # Try reducing the observed dimensions #----------------------------------------------------------------------- yp = list(range(0, xdim)) #[0,1,2] # Example for Lorenz-63: #yp = [0] # x only #yp = [1] # y only #yp = [2] # z only #yp = [0,1] # x and y only #yp = [1,2] # y and z only #yp = [0,2] # z and x only if len(yp) < xdim: obs.reduceDim(yp)
from module_obs_network import get_h_full_coverage, NDIM infile = 'x_nature.pkl' outfile = 'y_obs.pkl' #-------------------------------------------------------------------------------- # Define observation bias (mu) and error (sigma) # Note: sigma will be multiplied by nature run climatological standard deviation #-------------------------------------------------------------------------------- mu = 0 sigma = 0.1 #-------------------------------------------------------------------------------- # Create observation object #-------------------------------------------------------------------------------- obs = obs_data(name='observe_full_state', mu_init=mu, sigma_init=sigma) #-------------------------------------------------------------------------------- # Read the nature run #-------------------------------------------------------------------------------- sv = state_vector() sv = sv.load(infile) x_nature = sv.getTrajectory() nr, nc = x_nature.shape print('nr = ', nr) print('nc = ', nc) #-------------------------------------------------------------------------------- # Compute the climatological variance #--------------------------------------------------------------------------------